
PHP Manual

Stig Sæther Bakken

Alexander Aulbach

Egon Schmid

Jim Winstead

Lars Torben Wilson

Rasmus Lerdorf

Zeev Suraski

Andrei Zmievski

Edited by

Stig Sæther Bakken

Egon Schmid

PHP Manual

by Stig Sæther Bakken, Alexander Aulbach, Egon Schmid, Jim Winstead, Lars Torben Wilson, Rasmus Lerdorf, Zeev Suraski, and Andrei Zmievski

by

Edited by Stig Sæther Bakken

Edited by Egon Schmid

Published 20-08-2000

Copyright © 1997, 1998, 1999, 2000 by the PHP Documentation Group

Copyright

 This manual is © Copyright 1997, 1998, 1999, 2000 by the PHP Documentation Group. The members of this group are listed on the front page of this manual.

 This manual can be redistributed under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Table of Contents

Preface
000

About this Manual
000

I. Getting Started
000

1. Introduction
000

What is PHP?
000

What can PHP do?
000

A brief history of PHP
000

2. Installation
000

Downloading the latest version
000

Installation on UNIX systems
000

Quick Installation Instructions (Apache Module Version)
000

Apache Module
000

fhttpd Module
000

CGI version
000

Database Support Options
000

Adabas D
000

dBase
000

filePro
000

IBM DB2
000

mSQL
000

MySQL
000

iODBC
000

OpenLink ODBC
000

Oracle
000

PostgreSQL
000

Solid
000

Sybase
000

Sybase-CT
000

Velocis
000

A custom ODBC library
000

Unified ODBC
000

LDAP
000

Other configure options
000

--with-mcrypt=DIR
000

--enable-sysvsem
000

--enable-sysvshm
000

--with-xml
000

--enable-maintainer-mode
000

--with-system-regex
000

--with-config-file-path
000

--with-exec-dir
000

--enable-debug
000

--enable-safe-mode
000

--enable-track-vars
000

--enable-magic-quotes
000

--enable-debugger
000

--enable-discard-path
000

--enable-bcmath
000

--enable-force-cgi-redirect
000

--disable-short-tags
000

--enable-url-includes
000

--disable-syntax-hl
000

CPPFLAGS and LDFLAGS
000

Building
000

Testing
000

Benchmarking
000

Installation on Windows 95/98/NT systems
000

General Installation Steps
000

Windows 95/98/NT and PWS/IIS 3
000

Windows NT and IIS 4
000

Windows 9x/NT and Apache 1.3.x
000

Omni HTTPd 2.0b1 for Windows
000

PHP Modules
000

Problems?
000

Read the FAQ
000

Bug reports
000

Other problems
000

3. Configuration
000

The configuration file
000

General Configuration Directives
000

Mail Configuration Directives
000

Safe Mode Configuration Directives
000

Debugger Configuration Directives
000

Extension Loading Directives
000

MySQL Configuration Directives
000

mSQL Configuration Directives
000

Postgres Configuration Directives
000

Sybase Configuration Directives
000

Sybase-CT Configuration Directives
000

Informix Configuration Directives
000

BC Math Configuration Directives
000

Browser Capability Configuration Directives
000

Unified ODBC Configuration Directives
000

4. Security
000

CGI binary
000

Possible attacks
000

Case 1: only public files served
000

Case 2: using --enable-force-cgi-redirect
000

Case 3: setting doc_root or user_dir
000

Case 4: PHP parser outside of web tree
000

Apache module
000

II. Language Reference
000

5. Basic syntax
000

Escaping from HTML
000

Instruction separation
000

Comments
000

6. Types
000

Integers
000

Floating point numbers
000

Strings
000

String conversion
000

Arrays
000

Single Dimension Arrays
000

Multi-Dimensional Arrays
000

Objects
000

Object Initialization
000

Type Juggling
000

Type Casting
000

7. Variables
000

Basics
000

Predefined variables
000

Apache variables
000

Environment variables
000

PHP variables
000

Variable scope
000

Variable variables
000

Variables from outside PHP
000

HTML Forms (GET and POST)
000

IMAGE SUBMIT variable names
000

HTTP Cookies
000

Environment variables
000

Dots in incoming variable names
000

Determining variable types
000

8. Constants
000

9. Expressions
000

10. Operators
000

Arithmetic Operators
000

Assignment Operators
000

Bitwise Operators
000

Comparison Operators
000

Error control Operators
000

Execution Operators
000

Incrementing/Decrementing Operators
000

Logical Operators
000

Operator Precedence
000

String Operators
000

11. Control Structures
000

if
000

else
000

elseif
000

Alternative syntax for control structures
000

while
000

do..while
000

for
000

foreach
000

break
000

continue
000

switch
000

require()
000

include()
000

require_once()
000

include_once()
000

12. Functions
000

User-defined functions
000

Function arguments
000

Making arguments be passed by reference
000

Default argument values
000

Variable-length argument lists
000

Returning values
000

old_function
000

Variable functions
000

13. Classes and Objects
000

class
000

14. References explained
000

What are references?
000

What references do?
000

What references aren't?
000

Returning references
000

Unsetting references
000

Spotting the reference
000

global
000

$this
000

III. Features
000

15. Error handling
000

16. Creating and manipulating images
000

17. HTTP authentication with PHP
000

18. Cookies
000

19. Handling file uploads
000

POST method uploads
000

Common Pitfalls
000

Uploading multiple files
000

PUT method support
000

20. Using remote files
000

21. Connection handling
000

22. Persistent database connections
000

IV. Function Reference
000

I. Apache-specific Functions
000

apache_lookup_uri
000

apache_note
000

getallheaders
000

virtual
000

II. Array Functions
000

array
000

array_count_values
000

array_diff
000

array_flip
000

array_intersect
000

array_keys
000

array_merge
000

array_merge_recursive
000

array_multisort
000

array_pad
000

array_pop
000

array_push
000

array_rand
000

array_reverse
000

array_shift
000

array_slice
000

array_splice
000

array_unique
000

array_unshift
000

array_values
000

array_walk
000

arsort
000

asort
000

compact
000

count
000

current
000

each
000

end
000

extract
000

in_array
000

key
000

krsort
000

ksort
000

list
000

next
000

pos
000

prev
000

range
000

reset
000

rsort
000

shuffle
000

sizeof
000

sort
000

uasort
000

uksort
000

usort
000

III. Aspell functions
000

aspell_new
000

aspell_check
000

aspell_check-raw
000

aspell_suggest
000

IV. BCMath Arbitrary Precision Mathematics Functions
000

bcadd
000

bccomp
000

bcdiv
000

bcmod
000

bcmul
000

bcpow
000

bcscale
000

bcsqrt
000

bcsub
000

V. Calendar functions
000

JDToGregorian
000

GregorianToJD
000

JDToJulian
000

JulianToJD
000

JDToJewish
000

JewishToJD
000

JDToFrench
000

FrenchToJD
000

JDMonthName
000

JDDayOfWeek
000

easter_date
000

easter_days
000

unixtojd
000

jdtounix
000

VI. CCVS API Functions
000

000

VII. COM support functions for Windows
000

com_load
000

com_invoke
000

com_propget
000

com_get
000

com_propput
000

com_propset
000

com_set
000

VIII. Class/Object Functions
000

get_class
000

get_parent_class
000

get_class_methods
000

get_class_vars
000

get_object_vars
000

is_subclass_of
000

class_exists
000

method_exists
000

get_declared_classes
000

call_user_method
000

IX. ClibPDF functions
000

cpdf_global_set_document_limits
000

cpdf_set_creator
000

cpdf_set_title
000

cpdf_set_subject
000

cpdf_set_keywords
000

cpdf_open
000

cpdf_close
000

cpdf_page_init
000

cpdf_finalize_page
000

cpdf_finalize
000

cpdf_output_buffer
000

cpdf_save_to_file
000

cpdf_set_current_page
000

cpdf_begin_text
000

cpdf_end_text
000

cpdf_show
000

cpdf_show_xy
000

cpdf_text
000

cpdf_set_font
000

cpdf_set_leading
000

cpdf_set_text_rendering
000

cpdf_set_horiz_scaling
000

cpdf_set_text_rise
000

cpdf_set_text_matrix
000

cpdf_set_text_pos
000

cpdf_set_char_spacing
000

cpdf_set_word_spacing
000

cpdf_continue_text
000

cpdf_stringwidth
000

cpdf_save
000

cpdf_restore
000

cpdf_translate
000

cpdf_scale
000

cpdf_rotate
000

cpdf_setflat
000

cpdf_setlinejoin
000

cpdf_setlinecap
000

cpdf_setmiterlimit
000

cpdf_setlinewidth
000

cpdf_setdash
000

cpdf_newpath
000

cpdf_moveto
000

cpdf_rmoveto
000

cpdf_curveto
000

cpdf_lineto
000

cpdf_rlineto
000

cpdf_circle
000

cpdf_arc
000

cpdf_rect
000

cpdf_closepath
000

cpdf_stroke
000

cpdf_closepath_stroke
000

cpdf_fill
000

cpdf_fill_stroke
000

cpdf_closepath_fill_stroke
000

cpdf_clip
000

cpdf_setgray_fill
000

cpdf_setgray_stroke
000

cpdf_setgray
000

cpdf_setrgbcolor_fill
000

cpdf_setrgbcolor_stroke
000

cpdf_setrgbcolor
000

cpdf_add_outline
000

cpdf_set_page_animation
000

cpdf_import_jpeg
000

cpdf_place_inline_image
000

cpdf_add_annotation
000

X. CURL, Client URL Library Functions
000

curl_init
000

curl_setopt
000

curl_exec
000

curl_close
000

curl_version
000

XI. Cybercash payment functions
000

cybercash_encr
000

cybercash_decr
000

cybercash_base64_encode
000

cybercash_base64_decode
000

XII. Database (dbm-style) abstraction layer functions
000

dba_close
000

dba_delete
000

dba_exists
000

dba_fetch
000

dba_firstkey
000

dba_insert
000

dba_nextkey
000

dba_popen
000

dba_open
000

dba_optimize
000

dba_replace
000

dba_sync
000

XIII. Date and Time functions
000

checkdate
000

date
000

getdate
000

gettimeofday
000

gmdate
000

gmmktime
000

gmstrftime
000

localtime
000

microtime
000

mktime
000

strftime
000

time
000

strtotime
000

XIV. dBase functions
000

dbase_create
000

dbase_open
000

dbase_close
000

dbase_pack
000

dbase_add_record
000

dbase_replace_record
000

dbase_delete_record
000

dbase_get_record
000

dbase_get_record_with_names
000

dbase_numfields
000

dbase_numrecords
000

XV. DBM Functions
000

dbmopen
000

dbmclose
000

dbmexists
000

dbmfetch
000

dbminsert
000

dbmreplace
000

dbmdelete
000

dbmfirstkey
000

dbmnextkey
000

dblist
000

XVI. Directory functions
000

chdir
000

dir
000

closedir
000

opendir
000

readdir
000

rewinddir
000

XVII. Dynamic Loading functions
000

dl
000

XVIII. DOM XML functions
000

xmldoc
000

xmldocfile
000

xmltree
000

XIX. filePro functions
000

filepro
000

filepro_fieldname
000

filepro_fieldtype
000

filepro_fieldwidth
000

filepro_retrieve
000

filepro_fieldcount
000

filepro_rowcount
000

XX. Filesystem functions
000

basename
000

chgrp
000

chmod
000

chown
000

clearstatcache
000

copy
000

delete
000

dirname
000

diskfreespace
000

fclose
000

feof
000

fgetc
000

fgetcsv
000

fgets
000

fgetss
000

file
000

file_exists
000

fileatime
000

filectime
000

filegroup
000

fileinode
000

filemtime
000

fileowner
000

fileperms
000

filesize
000

filetype
000

flock
000

fopen
000

fpassthru
000

fputs
000

fread
000

fscanf
000

fseek
000

fstat
000

ftell
000

ftruncate
000

fwrite
000

set_file_buffer
000

is_dir
000

is_executable
000

is_file
000

is_link
000

is_readable
000

is_writeable
000

link
000

linkinfo
000

mkdir
000

pclose
000

popen
000

readfile
000

readlink
000

rename
000

rewind
000

rmdir
000

stat
000

lstat
000

realpath
000

symlink
000

tempnam
000

touch
000

umask
000

unlink
000

XXI. Forms Data Format functions
000

fdf_open
000

fdf_close
000

fdf_create
000

fdf_save
000

fdf_get_value
000

fdf_set_value
000

fdf_next_field_name
000

fdf_set_ap
000

fdf_set_status
000

fdf_get_status
000

fdf_set_file
000

fdf_get_file
000

XXII. FTP functions
000

ftp_connect
000

ftp_login
000

ftp_pwd
000

ftp_cdup
000

ftp_chdir
000

ftp_mkdir
000

ftp_rmdir
000

ftp_nlist
000

ftp_rawlist
000

ftp_systype
000

ftp_pasv
000

ftp_get
000

ftp_fget
000

ftp_put
000

ftp_fput
000

ftp_size
000

ftp_mdtm
000

ftp_rename
000

ftp_delete
000

ftp_site
000

ftp_quit
000

XXIII. GNU Gettext
000

bindtextdomain
000

dcgettext
000

dgettext
000

gettext
000

textdomain
000

XXIV. HTTP functions
000

header
000

header_sent
000

setcookie
000

XXV. Hyperwave functions
000

hw_Array2Objrec
000

hw_Children
000

hw_ChildrenObj
000

hw_Close
000

hw_Connect
000

hw_Cp
000

hw_Deleteobject
000

hw_DocByAnchor
000

hw_DocByAnchorObj
000

hw_DocumentAttributes
000

hw_DocumentBodyTag
000

hw_DocumentContent
000

hw_DocumentSetContent
000

hw_DocumentSize
000

hw_ErrorMsg
000

hw_EditText
000

hw_Error
000

hw_Free_Document
000

hw_GetParents
000

hw_GetParentsObj
000

hw_GetChildColl
000

hw_GetChildCollObj
000

hw_GetRemote
000

hw_GetRemoteChildren
000

hw_GetSrcByDestObj
000

hw_GetObject
000

hw_GetAndLock
000

hw_GetText
000

hw_GetObjectByQuery
000

hw_GetObjectByQueryObj
000

hw_GetObjectByQueryColl
000

hw_GetObjectByQueryCollObj
000

hw_GetChildDocColl
000

hw_GetChildDocCollObj
000

hw_GetAnchors
000

hw_GetAnchorsObj
000

hw_Mv
000

hw_Identify
000

hw_InCollections
000

hw_Info
000

hw_InsColl
000

hw_InsDoc
000

hw_InsertDocument
000

hw_InsertObject
000

hw_mapid
000

hw_Modifyobject
000

hw_New_Document
000

hw_Objrec2Array
000

hw_OutputDocument
000

hw_pConnect
000

hw_PipeDocument
000

hw_Root
000

hw_Unlock
000

hw_Who
000

hw_Username
000

XXVI. ICAP Functions
000

icap_open
000

icap_close
000

icap_fetch_event
000

icap_list_events
000

icap_store_event
000

icap_delete_event
000

icap_snooze
000

icap_list_alarms
000

XXVII. Image functions
000

GetImageSize
000

ImageArc
000

ImageChar
000

ImageCharUp
000

ImageColorAllocate
000

ImageColorDeAllocate
000

ImageColorAt
000

ImageColorClosest
000

ImageColorExact
000

ImageColorResolve
000

ImageGammaCorrect
000

ImageColorSet
000

ImageColorsForIndex
000

ImageColorsTotal
000

ImageColorTransparent
000

ImageCopy
000

ImageCopyResized
000

ImageCreate
000

ImageCreateFromGIF
000

ImageCreateFromJPEG
000

ImageCreateFromPNG
000

ImageDashedLine
000

ImageDestroy
000

ImageFill
000

ImageFilledPolygon
000

ImageFilledRectangle
000

ImageFillToBorder
000

ImageFontHeight
000

ImageFontWidth
000

ImageGIF
000

ImagePNG
000

ImageJPEG
000

ImageInterlace
000

ImageLine
000

ImageLoadFont
000

ImagePolygon
000

ImagePSBBox
000

ImagePSEncodeFont
000

ImagePSFreeFont
000

ImagePSLoadFont
000

ImagePsExtendFont
000

ImagePsSlantFont
000

ImagePSText
000

ImageRectangle
000

ImageSetPixel
000

ImageString
000

ImageStringUp
000

ImageSX
000

ImageSY
000

ImageTTFBBox
000

ImageTTFText
000

ImageTypes
000

read_exif_data
000

XXVIII. IMAP, POP3 and NNTP functions
000

imap_append
000

imap_base64
000

imap_body
000

imap_check
000

imap_close
000

imap_createmailbox
000

imap_delete
000

imap_deletemailbox
000

imap_expunge
000

imap_fetchbody
000

imap_fetchstructure
000

imap_header
000

imap_rfc822_parse_headers
000

imap_headers
000

imap_listmailbox
000

imap_getmailboxes
000

imap_listsubscribed
000

imap_getsubscribed
000

imap_mail_copy
000

imap_mail_move
000

imap_num_msg
000

imap_num_recent
000

imap_open
000

imap_ping
000

imap_renamemailbox
000

imap_reopen
000

imap_subscribe
000

imap_undelete
000

imap_unsubscribe
000

imap_qprint
000

imap_8bit
000

imap_binary
000

imap_scanmailbox
000

imap_mailboxmsginfo
000

imap_rfc822_write_address
000

imap_rfc822_parse_adrlist
000

imap_setflag_full
000

imap_clearflag_full
000

imap_sort
000

imap_fetchheader
000

imap_uid
000

imap_msgno
000

imap_search
000

imap_last_error
000

imap_errors
000

imap_alerts
000

imap_status
000

imap_utf7_decode
000

imap_utf7_encode
000

imap_utf8
000

imap_fetch_overview
000

imap_mime_header_decode
000

imap_mail_compose
000

imap_mail
000

XXIX. Informix functions
000

ifx_connect
000

ifx_pconnect
000

ifx_close
000

ifx_query
000

ifx_prepare
000

ifx_do
000

ifx_error
000

ifx_errormsg
000

ifx_affected_rows
000

ifx_getsqlca
000

ifx_fetch_row
000

ifx_htmltbl_result
000

ifx_fieldtypes
000

ifx_fieldproperties
000

ifx_num_fields
000

ifx_num_rows
000

ifx_free_result
000

ifx_create_char
000

ifx_free_char
000

ifx_update_char
000

ifx_get_char
000

ifx_create_blob
000

ifx_copy_blob
000

ifx_free_blob
000

ifx_get_blob
000

ifx_update_blob
000

ifx_blobinfile_mode
000

ifx_textasvarchar
000

ifx_byteasvarchar
000

ifx_nullformat
000

ifxus_create_slob
000

ifx_free_slob
000

ifxus_close_slob
000

ifxus_open_slob
000

ifxus_tell_slob
000

ifxus_seek_slob
000

ifxus_read_slob
000

ifxus_write_slob
000

XXX. InterBase functions
000

ibase_connect
000

ibase_pconnect
000

ibase_close
000

ibase_query
000

ibase_fetch_row
000

ibase_fetch_object
000

ibase_free_result
000

ibase_prepare
000

ibase_execute
000

ibase_free_query
000

ibase_timefmt
000

ibase_num_fields
000

XXXI. LDAP functions
000

ldap_add
000

ldap_bind
000

ldap_close
000

ldap_compare
000

ldap_connect
000

ldap_count_entries
000

ldap_delete
000

ldap_dn2ufn
000

ldap_err2str
000

ldap_errno
000

ldap_error
000

ldap_explode_dn
000

ldap_first_attribute
000

ldap_first_entry
000

ldap_free_result
000

ldap_get_attributes
000

ldap_get_dn
000

ldap_get_entries
000

ldap_get_values
000

ldap_get_values_len
000

ldap_list
000

ldap_modify
000

ldap_mod_add
000

ldap_mod_del
000

ldap_mod_replace
000

ldap_next_attribute
000

ldap_next_entry
000

ldap_read
000

ldap_search
000

ldap_unbind
000

XXXII. Mail functions
000

mail
000

ezmlm_hash
000

XXXIII. Mathematical Functions
000

abs
000

acos
000

asin
000

atan
000

atan2
000

base_convert
000

bindec
000

ceil
000

cos
000

decbin
000

dechex
000

decoct
000

deg2rad
000

exp
000

floor
000

getrandmax
000

hexdec
000

log
000

log10
000

max
000

min
000

mt_rand
000

mt_srand
000

mt_getrandmax
000

number_format
000

octdec
000

pi
000

pow
000

rad2deg
000

rand
000

round
000

sin
000

sqrt
000

srand
000

tan
000

XXXIV. MCAL functions
000

mcal_open
000

mcal_close
000

mcal_fetch_event
000

mcal_list_events
000

mcal_append_event
000

mcal_store_event
000

mcal_delete_event
000

mcal_snooze
000

mcal_list_alarms
000

mcal_event_init
000

mcal_event_set_category
000

mcal_event_set_title
000

mcal_event_set_description
000

mcal_event_set_start
000

mcal_event_set_end
000

mcal_event_set_alarm
000

mcal_event_set_class
000

mcal_is_leap_year
000

mcal_days_in_month
000

mcal_date_valid
000

mcal_time_valid
000

mcal_day_of_week
000

mcal_day_of_year
000

mcal_date_compare
000

mcal_next_recurrence
000

mcal_event_set_recur_none
000

mcal_event_set_recur_daily
000

mcal_event_set_recur_weekly
000

mcal_event_set_recur_monthly_mday
000

mcal_event_set_recur_monthly_wday
000

mcal_event_set_recur_yearly
000

mcal_fetch_current_stream_event
000

mcal_event_add_attribute
000

XXXV. Mcrypt Encryption Functions
000

mcrypt_get_cipher_name
000

mcrypt_get_block_size
000

mcrypt_get_key_size
000

mcrypt_create_iv
000

mcrypt_cbc
000

mcrypt_cfb
000

mcrypt_ecb
000

mcrypt_ofb
000

mcrypt_list_algorithms
000

mcrypt_list_modes
000

mcrypt_get_iv_size
000

mcrypt_encrypt
000

mcrypt_decrypt
000

mcrypt_module_open
000

mcrypt_generic_init
000

mcrypt_generic
000

mdecrypt_generic
000

mcrypt_generic_end
000

mcrypt_enc_self_test
000

mcrypt_enc_is_block_algorithm_mode
000

mcrypt_enc_is_block_algorithm
000

mcrypt_enc_is_block_mode
000

mcrypt_enc_get_block_size
000

mcrypt_enc_get_key_size
000

mcrypt_enc_get_supported_key_sizes
000

mcrypt_enc_get_iv_size
000

mcrypt_enc_get_algorithms_name
000

mcrypt_enc_get_modes_name
000

mcrypt_module_self_test
000

mcrypt_module_is_block_algorithm_mode
000

mcrypt_module_is_block_algorithm
000

mcrypt_module_is_block_mode
000

mcrypt_module_get_algo_block_size
000

mcrypt_module_get_algo_key_size
000

mcrypt_module_get_algo_supported_key_sizes
000

XXXVI. Mhash Functions
000

mhash_get_hash_name
000

mhash_get_block_size
000

mhash_count
000

mhash
000

XXXVII. Microsoft SQL Server functions
000

mssql_close
000

mssql_connect
000

mssql_data_seek
000

mssql_fetch_array
000

mssql_fetch_field
000

mssql_fetch_object
000

mssql_fetch_row
000

mssql_field_length
000

mssql_field_name
000

mssql_field_seek
000

mssql_field_type
000

mssql_free_result
000

mssql_get_last_message
000

mssql_min_error_severity
000

mssql_min_message_severity
000

mssql_num_fields
000

mssql_num_rows
000

mssql_pconnect
000

mssql_query
000

mssql_result
000

mssql_select_db
000

XXXVIII. Miscellaneous functions
000

connection_aborted
000

connection_status
000

connection_timeout
000

define
000

defined
000

die
000

eval
000

exit
000

func_get_arg
000

func_get_args
000

func_num_args
000

function_exists
000

get_browser
000

ignore_user_abort
000

iptcparse
000

leak
000

pack
000

register_shutdown_function
000

serialize
000

sleep
000

uniqid
000

unpack
000

unserialize
000

usleep
000

highlight_string
000

highlight_file
000

show_source
000

XXXIX. mSQL functions
000

msql
000

msql_affected_rows
000

msql_close
000

msql_connect
000

msql_create_db
000

msql_createdb
000

msql_data_seek
000

msql_dbname
000

msql_drop_db
000

msql_dropdb
000

msql_error
000

msql_fetch_array
000

msql_fetch_field
000

msql_fetch_object
000

msql_fetch_row
000

msql_fieldname
000

msql_field_seek
000

msql_fieldtable
000

msql_fieldtype
000

msql_fieldflags
000

msql_fieldlen
000

msql_free_result
000

msql_freeresult
000

msql_list_fields
000

msql_listfields
000

msql_list_dbs
000

msql_listdbs
000

msql_list_tables
000

msql_listtables
000

msql_num_fields
000

msql_num_rows
000

msql_numfields
000

msql_numrows
000

msql_pconnect
000

msql_query
000

msql_regcase
000

msql_result
000

msql_select_db
000

msql_selectdb
000

msql_tablename
000

XL. MySQL functions
000

mysql_affected_rows
000

mysql_change_user
000

mysql_close
000

mysql_connect
000

mysql_create_db
000

mysql_data_seek
000

mysql_db_query
000

mysql_drop_db
000

mysql_errno
000

mysql_error
000

mysql_fetch_array
000

mysql_fetch_field
000

mysql_fetch_lengths
000

mysql_fetch_object
000

mysql_fetch_row
000

mysql_field_flags
000

mysql_field_name
000

mysql_field_len
000

mysql_field_seek
000

mysql_field_table
000

mysql_field_type
000

mysql_free_result
000

mysql_insert_id
000

mysql_list_dbs
000

mysql_list_fields
000

mysql_list_tables
000

mysql_num_fields
000

mysql_num_rows
000

mysql_pconnect
000

mysql_query
000

mysql_result
000

mysql_select_db
000

mysql_tablename
000

XLI. Network Functions
000

checkdnsrr
000

closelog
000

debugger_off
000

debugger_on
000

fsockopen
000

gethostbyaddr
000

gethostbyname
000

gethostbynamel
000

getmxrr
000

getprotobyname
000

getprotobynumber
000

getservbyname
000

getservbyport
000

openlog
000

pfsockopen
000

socket_set_blocking
000

syslog
000

ip2long
000

long2ip
000

XLII. Unified ODBC functions
000

odbc_autocommit
000

odbc_binmode
000

odbc_close
000

odbc_close_all
000

odbc_commit
000

odbc_connect
000

odbc_cursor
000

odbc_do
000

odbc_exec
000

odbc_execute
000

odbc_fetch_into
000

odbc_fetch_row
000

odbc_field_name
000

odbc_field_num
000

odbc_field_type
000

odbc_field_len
000

odbc_field_precision
000

odbc_field_scale
000

odbc_free_result
000

odbc_longreadlen
000

odbc_num_fields
000

odbc_pconnect
000

odbc_prepare
000

odbc_num_rows
000

odbc_result
000

odbc_result_all
000

odbc_rollback
000

odbc_setoption
000

odbc_tables
000

odbc_tableprivileges
000

odbc_columns
000

odbc_columnprivileges
000

odbc_gettypeinfo
000

odbc_primarykeys
000

odbc_foreignkeys
000

odbc_procedures
000

odbc_procedurecolumns
000

odbc_specialcolumns
000

odbc_statistics
000

XLIII. Oracle functions
000

Ora_Bind
000

Ora_Close
000

Ora_ColumnName
000

Ora_ColumnType
000

Ora_Commit
000

Ora_CommitOff
000

Ora_CommitOn
000

Ora_Error
000

Ora_ErrorCode
000

Ora_Exec
000

Ora_Fetch
000

Ora_GetColumn
000

Ora_Logoff
000

Ora_Logon
000

Ora_Open
000

Ora_Parse
000

Ora_Rollback
000

XLIV. Oracle 8 functions
000

OCIDefineByName
000

OCIBindByName
000

OCILogon
000

OCIPLogon
000

OCINLogon
000

OCILogOff
000

OCIExecute
000

OCICommit
000

OCIRollback
000

OCINewDescriptor
000

OCIRowCount
000

OCINumCols
000

OCIResult
000

OCIFetch
000

OCIFetchInto
000

OCIFetchStatement
000

OCIColumnIsNULL
000

OCIColumnSize
000

OCIServerVersion
000

OCIStatementType
000

OCINewCursor
000

OCIFreeStatement
000

OCIFreeCursor
000

OCIColumnName
000

OCIColumnType
000

OCIParse
000

OCIError
000

OCIInternalDebug
000

XLV. PDF functions
000

PDF_get_info
000

PDF_set_info
000

PDF_open
000

PDF_close
000

PDF_begin_page
000

PDF_end_page
000

PDF_show
000

PDF_show_boxed
000

PDF_show_xy
000

PDF_set_font
000

PDF_set_leading
000

PDF_set_parameter
000

PDF_get_parameter
000

PDF_set_value
000

PDF_get_value
000

PDF_set_text_rendering
000

PDF_set_horiz_scaling
000

PDF_set_text_rise
000

PDF_set_text_matrix
000

PDF_set_text_pos
000

PDF_set_char_spacing
000

PDF_set_word_spacing
000

PDF_skew
000

PDF_continue_text
000

PDF_stringwidth
000

PDF_save
000

PDF_restore
000

PDF_translate
000

PDF_scale
000

PDF_rotate
000

PDF_setflat
000

PDF_setlinejoin
000

PDF_setlinecap
000

PDF_setmiterlimit
000

PDF_setlinewidth
000

PDF_setdash
000

PDF_moveto
000

PDF_curveto
000

PDF_lineto
000

PDF_circle
000

PDF_arc
000

PDF_rect
000

PDF_closepath
000

PDF_stroke
000

PDF_closepath_stroke
000

PDF_fill
000

PDF_fill_stroke
000

PDF_closepath_fill_stroke
000

PDF_endpath
000

PDF_clip
000

PDF_setgray_fill
000

PDF_setgray_stroke
000

PDF_setgray
000

PDF_setrgbcolor_fill
000

PDF_setrgbcolor_stroke
000

PDF_setrgbcolor
000

PDF_add_outline
000

PDF_set_transition
000

PDF_set_duration
000

PDF_open_gif
000

PDF_open_png
000

PDF_open_memory_image
000

PDF_open_jpeg
000

PDF_close_image
000

PDF_place_image
000

PDF_put_image
000

PDF_execute_image
000

pdf_add_annotation
000

PDF_set_border_style
000

PDF_set_border_color
000

PDF_set_border_dash
000

XLVI. Verisign Payflow Pro functions
000

pfpro_init
000

pfpro_cleanup
000

pfpro_process
000

pfpro_process_raw
000

pfpro_version
000

XLVII. PHP options & information
000

assert
000

assert-options
000

error_log
000

error_reporting
000

extension_loaded
000

getenv
000

get_cfg_var
000

get_current_user
000

get_magic_quotes_gpc
000

get_magic_quotes_runtime
000

getlastmod
000

getmyinode
000

getmypid
000

getmyuid
000

getrusage
000

phpcredits
000

phpinfo
000

phpversion
000

php_logo_guid
000

php_sapi_name
000

putenv
000

set_magic_quotes_runtime
000

set_time_limit
000

zend_logo_guid
000

get_loaded_extensions
000

get_extension_funcs
000

get_required_files
000

get_included_files
000

XLVIII. POSIX functions
000

posix_kill
000

posix_getpid
000

posix_getppid
000

posix_getuid
000

posix_geteuid
000

posix_getgid
000

posix_getegid
000

posix_setuid
000

posix_setgid
000

posix_getgroups
000

posix_getlogin
000

posix_getpgrp
000

posix_setsid
000

posix_setpgid
000

posix_getpgid
000

posix_getsid
000

posix_uname
000

posix_times
000

posix_ctermid
000

posix_ttyname
000

posix_isatty
000

posix_getcwd
000

posix_mkfifo
000

posix_getgrnam
000

posix_getgrgid
000

posix_getpwnam
000

posix_getpwuid
000

posix_getrlimit
000

XLIX. PostgreSQL functions
000

pg_close
000

pg_cmdtuples
000

pg_connect
000

pg_dbname
000

pg_errormessage
000

pg_exec
000

pg_fetch_array
000

pg_fetch_object
000

pg_fetch_row
000

pg_fieldisnull
000

pg_fieldname
000

pg_fieldnum
000

pg_fieldprtlen
000

pg_fieldsize
000

pg_fieldtype
000

pg_freeresult
000

pg_getlastoid
000

pg_host
000

pg_loclose
000

pg_locreate
000

pg_loexport
000

pg_loimport
000

pg_loopen
000

pg_loread
000

pg_loreadall
000

pg_lounlink
000

pg_lowrite
000

pg_numfields
000

pg_numrows
000

pg_options
000

pg_pconnect
000

pg_port
000

pg_result
000

pg_trace
000

pg_tty
000

pg_untrace
000

L. Program Execution functions
000

escapeshellcmd
000

exec
000

passthru
000

system
000

LI. Pspell Functions
000

pspell_new
000

pspell_check
000

pspell_suggest
000

LII. GNU Readline
000

readline
000

readline_add_history
000

readline_clear_history
000

readline_completion_function
000

readline_info
000

readline_list_history
000

readline_read_history
000

readline_write_history
000

LIII. GNU Recode functions
000

recode_string
000

recode
000

recode_file
000

LIV. Regular Expression Functions (Perl-Compatible)
000

preg_match
000

preg_match_all
000

preg_replace
000

preg_split
000

preg_quote
000

preg_grep
000

Pattern Modifiers
000

Pattern Syntax
000

LV. Regular Expression Functions (POSIX Extended)
000

ereg
000

ereg_replace
000

eregi
000

eregi_replace
000

split
000

spliti
000

sql_regcase
000

LVI. Semaphore and Shared Memory Functions
000

sem_get
000

sem_acquire
000

sem_release
000

shm_attach
000

shm_detach
000

shm_remove
000

shm_put_var
000

shm_get_var
000

shm_remove_var
000

LVII. Session handling functions
000

session_start
000

session_destroy
000

session_name
000

session_module_name
000

session_save_path
000

session_id
000

session_register
000

session_unregister
000

session_unset
000

session_is_registered
000

session_get_cookie_params
000

session_set_cookie_params
000

session_decode
000

session_encode
000

LVIII. Shockwave Flash functions
000

swf_openfile
000

swf_closefile
000

swf_labelframe
000

swf_showframe
000

swf_setframe
000

swf_getframe
000

swf_mulcolor
000

swf_addcolor
000

swf_placeobject
000

swf_modifyobject
000

swf_removeobject
000

swf_nextid
000

swf_startdoaction
000

swf_actiongotoframe
000

swf_actiongeturl
000

swf_actionnextframe
000

swf_actionprevframe
000

swf_actionplay
000

swf_actionstop
000

swf_actiontogglequality
000

swf_actionwaitforframe
000

swf_actionsettarget
000

swf_actiongotolabel
000

swf_enddoaction
000

swf_defineline
000

swf_definerect
000

swf_definepoly
000

swf_startshape
000

swf_shapelinesolid
000

swf_shapefilloff
000

swf_shapefillsolid
000

swf_shapefillbitmapclip
000

swf_shapefillbitmaptile
000

swf_shapemoveto
000

swf_shapelineto
000

swf_shapecurveto
000

swf_shapecurveto3
000

swf_shapearc
000

swf_endshape
000

swf_definefont
000

swf_setfont
000

swf_fontsize
000

swf_fontslant
000

swf_fonttracking
000

swf_getfontinfo
000

swf_definetext
000

swf_textwidth
000

swf_definebitmap
000

swf_getbitmapinfo
000

swf_startsymbol
000

swf_endsymbol
000

swf_startbutton
000

swf_addbuttonrecord
000

swf_oncondition
000

swf_endbutton
000

swf_viewport
000

swf_ortho
000

swf_ortho2
000

swf_perspective
000

swf_polarview
000

swf_lookat
000

swf_pushmatrix
000

swf_popmatrix
000

swf_scale
000

swf_translate
000

swf_rotate
000

swf_posround
000

LIX. SNMP functions
000

snmpget
000

snmpset
000

snmpwalk
000

snmpwalkoid
000

snmp_get_quick_print
000

snmp_set_quick_print
000

LX. String functions
000

AddCSlashes
000

AddSlashes
000

bin2hex
000

Chop
000

Chr
000

chunk_split
000

convert_cyr_string
000

count_chars
000

crc32
000

crypt
000

echo
000

explode
000

flush
000

get_html_translation_table
000

get_meta_tags
000

hebrev
000

hebrevc
000

htmlentities
000

htmlspecialchars
000

implode
000

join
000

levenshtein
000

ltrim
000

md5
000

Metaphone
000

nl2br
000

ob_start
000

ob_get_contents
000

ob_end_flush
000

ob_end_clean
000

ob_implicit_flush
000

Ord
000

parse_str
000

print
000

printf
000

quoted_printable_decode
000

quotemeta
000

rtrim
000

sscanf
000

setlocale
000

similar_text
000

soundex
000

sprintf
000

strcasecmp
000

strchr
000

strcmp
000

strcspn
000

strip_tags
000

stripcslashes
000

stripslashes
000

stristr
000

strlen
000

str_pad
000

strpos
000

strrchr
000

str_repeat
000

strrev
000

strrpos
000

strspn
000

strstr
000

strtok
000

strtolower
000

strtoupper
000

str_replace
000

strtr
000

substr
000

substr_count
000

substr_replace
000

trim
000

ucfirst
000

ucwords
000

LXI. Sybase functions
000

sybase_affected_rows
000

sybase_close
000

sybase_connect
000

sybase_data_seek
000

sybase_fetch_array
000

sybase_fetch_field
000

sybase_fetch_object
000

sybase_fetch_row
000

sybase_field_seek
000

sybase_free_result
000

sybase_num_fields
000

sybase_num_rows
000

sybase_pconnect
000

sybase_query
000

sybase_result
000

sybase_select_db
000

LXII. URL Functions
000

base64_decode
000

base64_encode
000

parse_url
000

rawurldecode
000

rawurlencode
000

urldecode
000

urlencode
000

LXIII. Variable Functions
000

call_user_func
000

doubleval
000

empty
000

gettype
000

intval
000

is_array
000

is_bool
000

is_double
000

is_float
000

is_int
000

is_integer
000

is_long
000

is_numeric
000

is_object
000

is_real
000

is_resource
000

is_string
000

isset
000

print_r
000

settype
000

strval
000

unset
000

var_dump
000

LXIV. Vmailmgr functions
000

vm_adduser
000

vm_addalias
000

vm_passwd
000

vm_delalias
000

vm_deluser
000

LXV. WDDX functions
000

wddx_serialize_value
000

wddx_serialize_vars
000

wddx_packet_start
000

wddx_packet_end
000

wddx_add_vars
000

wddx_deserialize
000

LXVI. XML parser functions
000

xml_parser_create
000

xml_set_object
000

xml_set_element_handler
000

xml_set_character_data_handler
000

xml_set_processing_instruction_handler
000

xml_set_default_handler
000

xml_set_unparsed_entity_decl_handler
000

xml_set_notation_decl_handler
000

xml_set_external_entity_ref_handler
000

xml_parse
000

xml_get_error_code
000

xml_error_string
000

xml_get_current_line_number
000

xml_get_current_column_number
000

xml_get_current_byte_index
000

xml_parser_free
000

xml_parser_set_option
000

xml_parser_get_option
000

utf8_decode
000

utf8_encode
000

LXVII. YAZ
000

yaz_addinfo
000

yaz_close
000

yaz_connect
000

yaz_errno
000

yaz_error
000

yaz_hits
000

yaz_range
000

yaz_record
000

yaz_search
000

yaz_syntax
000

yaz_wait
000

LXVIII. YP/NIS Functions
000

yp_get_default_domain
000

yp_order
000

yp_master
000

yp_match
000

yp_first
000

yp_next
000

LXIX. Zlib Compression Functions
000

gzclose
000

gzeof
000

gzfile
000

gzgetc
000

gzgets
000

gzgetss
000

gzopen
000

gzpassthru
000

gzputs
000

gzread
000

gzrewind
000

gzseek
000

gztell
000

gzwrite
000

readgzfile
000

gzcompress
000

gzuncompress
000

V. Appendixes
000

A. Migrating from PHP/FI 2.0 to PHP 3.0
000

About the incompatbilities in 3.0
000

Start/end tags
000

if..endif syntax
000

while syntax
000

Expression types
000

Error messages have changed
000

Short-circuited boolean evaluation
000

Function true/false return values
000

Other incompatibilities
000

B. PHP development
000

Adding functions to PHP3
000

Function Prototype
000

Function Arguments
000

Variable Function Arguments
000

Using the Function Arguments
000

Memory Management in Functions
000

Setting Variables in the Symbol Table
000

Returning simple values
000

Returning complex values
000

Using the resource list
000

Using the persistent resource table
000

Adding runtime configuration directives
000

Calling User Functions
000

HashTable *function_table
000

pval *object
000

pval *function_name
000

pval *retval
000

int param_count
000

pval *params[]
000

Reporting Errors
000

E_NOTICE
000

E_WARNING
000

E_ERROR
000

E_PARSE
000

E_CORE_ERROR
000

E_CORE_WARNING
000

E_COMPILE_ERROR
000

E_COMPILE_WARNING
000

E_USER_ERROR
000

E_USER_WARNING
000

E_USER_NOTICE
000

C. The PHP Debugger
000

Using the Debugger
000

Debugger Protocol
000

Preface

 PHP, which stands for "PHP: Hypertext Preprocessor", is an HTML-embedded scripting language. Much of its syntax is borrowed from C, Java and Perl with a couple of unique PHP-specific features thrown in. The goal of the language is to allow web developers to write dynamically generated pages quickly.

About this Manual

 This manual is written in XML using the DocBook XML DTD (http://www.nwalsh.com/docbook/xml/), using DSSSL (http://www.jclark.com/dsssl/) (Document Style and Semantics Specification Language) for formatting. The tools used for formatting HTML, TeX and RTF versions are Jade (http://www.jclark.com/jade/), written by James Clark (http://www.jclark.com/bio.htm) and The Modular DocBook Stylesheets (http://nwalsh.com/docbook/dsssl/) written by Norman Walsh (http://nwalsh.com/). PHP's documentation framework is maintained by Stig Sæther Bakken (mailto:stig@php.net).

 Daily HTML snapshots of the manual, including translations, can be found at http://snaps.php.net/manual/.

Part I. Getting Started

Chapter 1. Introduction

What is PHP?

 PHP (officially "PHP: Hypertext Preprocessor") is a server-side HTML-embedded scripting language.

 Simple answer, but what does that mean? An example:

Example 1-1. An introductory example

<html>

 <head>

 <title>Example</title>

 </head>

 <body>

 <?php echo "Hi, I'm a PHP script!"; ?>

 </body>

</html>

 Notice how this is different from a CGI script written in other languages like Perl or C -- instead of writing a program with lots of commands to output HTML, you write an HTML script with a some embedded code to do something (in this case, output some text). The PHP code is enclosed in special start and end tags that allow you to jump into and out of PHP mode.

 What distinguishes PHP from something like client-side Javascript is that the code is executed on the server. If you were to have a script similar to the above on your server, the client would receive the results of running that script, with no way of determining what the underlying code may be. You can even configure your web server to process all your HTML files with PHP, and then there's really no way that users can tell what you have up your sleeve.

What can PHP do?

 At the most basic level, PHP can do anything any other CGI program can do, such as collect form data, generate dynamic page content, or send and receive cookies.

 Perhaps the strongest and most significant feature in PHP is its support for a wide range of databases. Writing a database-enabled web page is incredibly simple. The following databases are currently supported:

	Adabas D
	InterBase
	PostgreSQL

	dBase
	FrontBase
	Solid

	Empress
	mSQL
	Sybase

	FilePro (read-only)
	Direct MS-SQL
	Velocis

	IBM DB2
	MySQL
	Unix dbm

	Informix
	ODBC
	

	Ingres
	Oracle (OCI7 and OCI8)
	

 PHP also has support for talking to other services using protocols such as IMAP, SNMP, NNTP, POP3, HTTP and countless others. You can also open raw network sockets and interact using other protocols.

A brief history of PHP

 PHP was conceived sometime in the fall of 1994 by Rasmus Lerdorf (mailto:rasmus@php.net). Early non-released versions were used on his home page to keep track of who was looking at his online resume. The first version used by others was available sometime in early 1995 and was known as the Personal Home Page Tools. It consisted of a very simplistic parser engine that only understood a few special macros and a number of utilities that were in common use on home pages back then. A guestbook, a counter and some other stuff. The parser was rewritten in mid-1995 and named PHP/FI Version 2. The FI came from another package Rasmus had written which interpreted html form data. He combined the Personal Home Page tools scripts with the Form Interpreter and added mSQL support and PHP/FI was born. PHP/FI grew at an amazing pace and people started contributing code to it.

 It is difficult to give any hard statistics, but it is estimated that by late 1996 PHP/FI was in use on at least 15,000 web sites around the world. By mid-1997 this number had grown to over 50,000. Mid-1997 also saw a change in the development of PHP. It changed from being Rasmus' own pet project that a handful of people had contributed to, to being a much more organized team effort. The parser was rewritten from scratch by Zeev Suraski and Andi Gutmans and this new parser formed the basis for PHP Version 3. A lot of the utility code from PHP/FI was ported over to PHP3 and a lot of it was completely rewritten.

 Today (end-1999) either PHP/FI or PHP3 ships with a number of commercial products such as C2's StrongHold web server and RedHat Linux. A conservative estimate based on an extrapolation from numbers provided by NetCraft (http://www.netcraft.com/) (see also Netcraft Web Server Survey (http://www.netcraft.com/survey/)) would be that PHP is in use on over 1,000,000 sites around the world. To put that in perspective, that is more sites than run Netscape's flagship Enterprise server on the Internet.

 Also as of this writing, work is underway on the next generation of PHP, which will utilize the powerful Zend (http://www.zend.com/) scripting engine to deliver higher performance, and will also support running under webservers other than Apache as a native server module.

Chapter 2. Installation

Downloading the latest version

 The source code, and binary distributions for some platforms (including Windows), can be found at http://www.php.net/.

Installation on UNIX systems

 This section will guide you through the configuration and installation of PHP. Prerequisite knowledge and software:

•
 Basic UNIX skills (being able to operate "make" and a C compiler)

•
 An ANSI C compiler

•
 A web server

Quick Installation Instructions (Apache Module Version)

1. gunzip apache_1.3.x.tar.gz

2. tar xvf apache_1.3.x.tar

3. gunzip php-x.x.x.tar.gz

4. tar xvf php-x.x.x.tar

5. cd apache_1.3.x

6. ./configure --prefix=/www

7. cd ../php-x.x.x

8. ./configure --with-mysql --with-apache=../apache_1.3.x --enable-track-vars

9. make

10. make install

11. cd ../apache_1.3.x

12. for PHP 3: ./configure --activate-module=src/modules/php3/libphp3.a

 for PHP 4: ./configure --activate-module=src/modules/php4/libphp4.a

13. make

14. make install

 Instead of this step you may prefer to simply copy the httpd binary

 overtop of your existing binary. Make sure you shut down your

 server first though.

15. cd ../php-x.x.x

16. for PHP 3: cp php3.ini-dist /usr/local/lib/php3.ini

 for PHP 4: cp php.ini-dist /usr/local/lib/php.ini

 You can edit your .ini file to set PHP options. If

 you prefer this file in another location, use

 --with-config-file-path=/path in step 8.

17. Edit your httpd.conf or srm.conf file and add:

 For PHP 3: AddType application/x-httpd-php3 .php3

 For PHP 4: AddType application/x-httpd-php .php

 You can choose any extension you wish here. .php is simply the one

 we suggest.

18. Use your normal procedure for starting the Apache server. (You must

 stop and restart the server, not just cause the server to reload by

 use a HUP or USR1 signal.)

Apache Module

 PHP can be compiled in a number of different ways. Here is a quick summary:

./configure --with-apxs --with-pgsql

 This will create a libphp4.so shared library that is loaded into Apache using a LoadModule line in Apache's httpd.conf file. The PostgreSQL support is embedded into this libphp4.so library.

./configure --with-apxs --with-pgsql=shared

 This will again create a libphp4.so shared library for Apache, but it will also create a pgsql.so shared library that is loaded into PHP either by using the extension directive in php.ini file or by loading it explicitly in a script using the dl() function.

./configure --with-apache=/path/to/apache_source --with-pgsql

 This will create a libmodphp4.a library, a mod_php4.c and some accompanying files and copy this into the src/modules/php4 directory in the Apache source tree. Then you compile Apache using --activate-module=src/modules/php4/libphp4.a and the Apache build system will create libphp4.a and link it statically into the httpd binary. The PostgreSQL support is included directly into this httpd binary, so the final result here is a single httpd binary that includes all of Apache and all of PHP.

./configure --with-apache=/path/to/apache_source --with-pgsql=shared

 Same as before, except instead of including PostgreSQL support directly into the final httpd you will get a pgsql.so shared library that you can load into PHP from eihter the php.ini file or directly using dl().

fhttpd Module

 To build PHP as an fhttpd module, answer "yes" to "Build as an fhttpd module?" (the --with-fhttpd=DIR option to configure) and specify the fhttpd source base directory. The default directory is /usr/local/src/fhttpd. If you are running fhttpd, building PHP as a module will give better performance, more control and remote execution capability.

CGI version

 The default is to build PHP as a CGI program. If you are running a web server PHP has module support for, you should generally go for that solution for performance reasons. However, the CGI version enables Apache users to run different PHP-enabled pages under different user-ids. Please make sure you read through the Security chapter if you are going to run PHP as a CGI.

Database Support Options

 PHP has native support for a number of databases (as well as ODBC):

Adabas D

 --with-adabas=DIR
 Enables Adabas D support. The parameter is the Adabas D install directory and defaults to /usr/local/adabasd.

 Adabas home page (http://www.adabas.com/)

dBase

 --with-dbase
 Enables the bundled DBase support. No external libraries are required.

filePro

 --with-filepro
 Enables the bundled read-only filePro support. No external libraries are required.

IBM DB2

 --with-ibm-db2=DIR
 Enables IBM DB2 support. The parameter to this option is the DB2 base install directory and defaults to /home/db2inst1/sqllib.

 IBM DB2 home page (http://www.ibm.com/db2/)

mSQL

 --with-msql=DIR
 Enables mSQL support. The parameter to this option is the mSQL install directory and defaults to /usr/local/Hughes. This is the default directory of the mSQL 2.0 distribution. configure automatically detects which mSQL version you are running and PHP supports both 1.0 and 2.0, but if you compile PHP with mSQL 1.0, you can only access mSQL 1.0 databases, and vice-versa.

 See also mSQL Configuration Directives in the configuration file.

 mSQL home page (http://www.hughes.com.au/)

MySQL

 --with-mysql=DIR
 Enables MySQL support. The parameter to this option is the MySQL install directory and defaults to /usr/local. This is the default installation directory of the MySQL distribution.

 See also MySQL Configuration Directives in the configuration file.

 MySQL home page (http://www.mysql.com/)

iODBC

 --with-iodbc=DIR
 Includes iODBC support. This feature was first developed for iODBC Driver Manager, a freely redistributable ODBC driver manager which runs under many flavors of UNIX. The parameter to this option is the iODBC installation directory and defaults to /usr/local.

 FreeODBC home page (http://users.ids.net/~bjepson/freeODBC/) or iODBC home page (http://www.iodbc.org/)

OpenLink ODBC

 --with-openlink=DIR
 Includes OpenLink ODBC support. The parameter to this option is the OpenLink ODBC installation directory and defaults to /usr/local/openlink.

 OpenLink Software's home page (http://www.openlinksw.com/)

Oracle

 --with-oracle=DIR
 Includes Oracle support. Has been tested and should be working at least with Oracle versions 7.0 through 7.3. The parameter is the ORACLE_HOME directory. You do not have to specify this parameter if your Oracle environment has been set up.

 Oracle home page (http://www.oracle.com/)

PostgreSQL

 --with-pgsql=DIR
 Includes PostgreSQL support. The parameter is the PostgreSQL base install directory and defaults to /usr/local/pgsql.

 See also Postgres Configuration Directives in the configuration file.

 PostgreSQL home page (http://www.postgresql.org/)

Solid

 --with-solid=DIR
 Includes Solid support. The parameter is the Solid install directory and defaults to /usr/local/solid.

 Solid home page (http://www.solidtech.com/)

Sybase

 --with-sybase=DIR
 Includes Sybase support. The parameter is the Sybase install directory and defaults to /home/sybase.

 See also Sybase Configuration Directives in the configuration file.

 Sybase home page (http://www.sybase.com/)

Sybase-CT

 --with-sybase-ct=DIR
 Includes Sybase-CT support. The parameter is the Sybase-CT install directory and defaults to /home/sybase.

 See also Sybase-CT Configuration Directives in the configuration file.

Velocis

 --with-velocis=DIR
 Includes Velocis support. The parameter is the Velocis install directory and defaults to /usr/local/velocis.

 Velocis home page (http://www.raima.com/)

A custom ODBC library

 --with-custom-odbc=DIR
 Includes support for an arbitrary custom ODBC library. The parameter is the base directory and defaults to /usr/local.

 This option implies that you have defined CUSTOM_ODBC_LIBS when you run the configure script. You also must have a valid odbc.h header somewhere in your include path. If you don't have one, create it and include your specific header from there. Your header may also require some extra definitions, particularly when it is multiplatform. Define them in CFLAGS.

 For example, you can use Sybase SQL Anywhere on QNX as following: CFLAGS=-DODBC_QNX LDFLAGS=-lunix CUSTOM_ODBC_LIBS="-ldblib -lodbc" ./configure --with-custom-odbc=/usr/lib/sqlany50
Unified ODBC

 --disable-unified-odbc
 Disables the Unified ODBC module, which is a common interface to all the databases with ODBC-based interfaces, such as Solid, IBM DB2 and Adabas D. It also works for normal ODBC libraries. Has been tested with iODBC, Solid, Adabas D, IBM DB2 and Sybase SQL Anywhere. Requires that one (and only one) of these modules or the Velocis module is enabled, or a custom ODBC library specified. This option is only applicable if one of the following options is used: --with-iodbc, --with-solid, --with-ibm-db2, --with-adabas, --with-velocis, or --with-custom-odbc.

 See also Unified ODBC Configuration Directives in the configuration file.

LDAP

 --with-ldap=DIR
 Includes LDAP (Lightweight Directory Access Protocol) support. The parameter is the LDAP base install directory, defaults to /usr/local/ldap.

 More information about LDAP can be found in RFC1777 (http://www.faqs.org/rfcs/rfc1777.html) and RFC1778 (http://www.faqs.org/rfcs/rfc1778.html).

Other configure options

--with-mcrypt=DIR

 --with-mcrypt
 Include support for the mcrypt library. See the mcrypt documentation for more information. If you use the optional DIR argument, PHP will look for mcrypt.h in DIR/include.

--enable-sysvsem

 --enable-sysvsem
 Include support for Sys V semaphores (supported by most Unix derivates). See the Semaphore and Shared Memory documentation for more information.

--enable-sysvshm

 --enable-sysvshm
 Include support for Sys V shared memory (supported by most Unix derivates). See the Semaphore and Shared Memory documentation for more information.

--with-xml

 --with-xml
 Include support for a non-validating XML parser using James Clark's expat library (http://www.jclark.com/xml/). See the XML function reference for details.

--enable-maintainer-mode

 --enable-maintainer-mode
 Turns on extra dependencies and compiler warnings used by some of the PHP developers.

--with-system-regex

 --with-system-regex
 Uses the system's regular expression library rather than the bundled one. If you are building PHP as a server module, you must use the same library when building PHP as when linking the server. Enable this if the system's library provides special features you need. It is recommended that you use the bundled library if possible.

--with-config-file-path

 --with-config-file-path=DIR
 The path used to look for the configuration file when PHP starts up.

--with-exec-dir

 --with-exec-dir=DIR
 Only allow running of executables in DIR when in safe mode. Defaults to /usr/local/bin. This option only sets the default, it may be changed with the safe_mode_exec_dir directive in the configuration file later.

--enable-debug

 --enable-debug
 Enables extra debug information. This makes it possible to gather more detailed information when there are problems with PHP. (Note that this doesn't have anything to do with debugging facilities or information available to PHP scripts.)

--enable-safe-mode

 --enable-safe-mode
 Enables "safe mode" by default. This imposes several restrictions on what PHP can do, such as opening only files within the document root. Read the Security chapter for more more information. CGI users should always enable secure mode. This option only sets the default, it may be enabled or disabled with the safe_mode directive in the configuration file later.

--enable-track-vars

 --enable-track-vars
 Makes PHP keep track of where GET/POST/cookie variables come from in the arrays HTTP_GET_VARS, HTTP_POST_VARS and HTTP_COOKIE_VARS. This option only sets the default, it may be enabled or disabled with the track_vars directive in the configuration file later.

--enable-magic-quotes

 --enable-magic-quotes
 Enable magic quotes by default. This option only sets the default, it may be enabled or disabled with the magic_quotes_runtime directive in the configuration file later. See also the magic_quotes_gpc and the magic_quotes_sybase directives.

--enable-debugger

 --enable-debugger
 Enables the internal PHP debugger support. This feature is still in an experimental state. See also the Debugger Configuration directives in the configuration file.

--enable-discard-path

 --enable-discard-path
 If this is enabled, the PHP CGI binary can safely be placed outside of the web tree and people will not be able to circumvent .htaccess security. Read the section in the security chapter about this option.

--enable-bcmath

 --enable-bcmath
 Enables bc style arbitrary precision math functions. See also the bcmath.scale option in the configuration file.

--enable-force-cgi-redirect

 --enable-force-cgi-redirect
 Enable the security check for internal server redirects. You should use this if you are running the CGI version with Apache.

 When using PHP as a CGI binary, PHP by default always first checks that it is used by redirection (for example under Apache, by using Action directives). This makes sure that the PHP binary cannot be used to bypass standard web server authentication procedures by calling it directly, like http://my.host/cgi-bin/php/secret/doc.html. This example accesses http://my.host/secret/doc.html but does not honour any security settings enforced by httpd for directory /secret.

 Not enabling option disables the check and enables bypassing httpd security and authentication settings. Do this only if your server software is unable to indicate that a safe redirection was done and all your files under your document root and user directories may be accessed by anyone.

 Read the section in the security chapter about this option.

--disable-short-tags

 --disable-short-tags
 Disables the short form <? ?> PHP tags. You must disable the short form if you want to use PHP with XML. With short tags disabled, the only PHP code tag is <?php ?>. This option only sets the default, it may be enabled or disabled with the short_open_tag directive in the configuration file later.

--enable-url-includes

 --enable-url-includes
 Makes it possible to run code on other HTTP or FTP servers directly from PHP with include(). See also the include_path option in the configuration file.

--disable-syntax-hl

 --disable-syntax-hl
 Turns off syntax highlighting.

CPPFLAGS and LDFLAGS

 To make the PHP installation look for header or library files in different directories, modify the CPPFLAGS and LDFLAGS environment variables, respectively. If you are using a sensible shell, you should be able to do LDFLAGS=-L/my/lib/dir CPPFLAGS=-I/my/include/dir ./configure
Building

 When PHP is configured, you are ready to build the CGI executable or the PHP library. The command make should take care of this. If it fails and you can't figure out why, see the Problems section.

Testing

 If you have built PHP as a CGI program, you may test your build by typing make test. It is always a good idea to test your build. This way you may catch a problem with PHP on your platform early instead of having to struggle with it later.

Benchmarking

 If you have built PHP as a CGI program, you may benchmark your build by typing make bench. Note that if safe mode is on by default, the benchmark may not be able to finish if it takes longer then the 30 seconds allowed. This is because the set_time_limit() can not be used in safe mode. Use the max_execution_time configuration setting to control this time for your own scripts. make bench ignores the configuration file.

Installation on Windows 95/98/NT systems

 This install guide will help you install and configure PHP on your Windows 9x/NT webservers. This guide was compiled by Bob Silva (mailto:bob_silva@mail.umesd.k12.or.us). The latest revision can be found at http://www.umesd.k12.or.us/php/win32install.html.

 This guide provides installation support for:

•
 Personal Web Server (Newest version recommended)

•
 Internet Information Server 3 or 4

•
 Apache 1.3.x

•
 Omni HTTPd 2.0b1

General Installation Steps

 The following steps should be performed on all installations before the server specific instructions.

•
 Extract the distribution file to a directory of your choice. "C:\PHP\" is a good start.

•
 Copy the file, 'php.ini-dist' to your '%WINDOWS%' directory and rename it to 'php.ini'. Your '%WINDOWS%' directory is typically:

	c:\windows for Windows 95/98

	c:\winnt or c:\winnt40 for NT servers

•
 Edit your 'php.ini' file:

•
 You will need to change the 'extension_dir' setting to point to your php-install-dir, or where you have placed your 'php_*.dll' files. ex: c:\php

•
 If you are using Omni Httpd, do not follow the next step. Set the 'doc_root' to point to your webservers document_root. ex: c:\apache\htdocs or c:\webroot

•
 Choose which modules you would like to load when PHP starts. You can uncomment the: 'extension=php_*.dll' lines to load these modules. Some modules require you to have additional libraries installed on your system for the module to work correctly. The PHP FAQ (http://www.php.net/FAQ.php) has more information on where to get supporting libraries. You can also load a module dynamically in your script using: dl("php_*.dll");

•
 On PWS and IIS, you can set the browscap.ini to point to: 'c:\windows\system\inetsrv\browscap.ini' on Windows 95/98 and 'c:\winnt\system32\inetsrv\browscap.ini' on NT Server. Additional information on using the browscap functionality in PHP can be found at this mirror (http://php.netvision.net.il/browser-id.php3), select the "source" button to see it in action.

 The DLLs for PHP extensions are prefixed with 'php_'. This prevents confusion between PHP extensions and their supporting libraries.

Windows 95/98/NT and PWS/IIS 3

 The recommended method for configuring these servers is to use the INF file included with the distribution (php_iis_reg.inf). You may want to edit this file and make sure the extensions and PHP install directories match your configuration. Or you can follow the steps below to do it manually.

 WARNING: These steps involve working directly with the windows registry. One error here can leave your system in an unstable state. We highly recommend that you back up your registry first. The PHP Development team will not be held responsible if you damage your registry.

•
 Run Regedit.

•
 Navigate to: HKEY_LOCAL_MACHINE /System /CurrentControlSet /Services /W3Svc /Parameters /ScriptMap.

•
 On the edit menu select: New->String Value.

•
 Type in the extension you wish to use for your php scripts. ex: .php

•
 Double click on the new string value and enter the path to php.exe in the value data field. ex: c:\php\php.exe %s %s. The '%s %s' is VERY important, PHP will not work properly without it.

•
 Repeat these steps for each extension you wish to associate with PHP scripts.

•
 Now navigate to: HKEY_CLASSES_ROOT

•
 On the edit menu select: New->Key.

•
 Name the key to the extension you setup in the previous section. ex: .php

•
 Highlight the new key and in the right side pane, double click the "default value" and enter phpfile.

•
 Repeat the last step for each extension you set up in the previous section.

•
 Now create another New->Key under HKEY_CLASSES_ROOT and name it phpfile.

•
 Highlight the new key phpfile and in the right side pane, double click the "default value" and enter PHP Script.

•
 Right click on the phpfile key and select New->Key, name it Shell.

•
 Right click on the Shell key and select New->Key, name it open.

•
 Right click on the open key and select New->Key, name it command.

•
 Highlight the new key command and in the right side pane, double click the "default value" and enter the path to php.exe. ex: c:\php\php.exe -q %1. (don't forget the %1).

•
 Exit Regedit.

 PWS and IIS 3 users now have a fully operational system. IIS 3 users can use a nifty tool (http://www.genusa.com/iis/iiscfg.html) from Steven Genusa to configure their script maps.

Windows NT and IIS 4

 To install PHP on an NT Server running IIS 4, follow these instructions:

•
 In Internet Service Manager (MMC), select the Web site or the starting point directory of an application.

•
 Open the directory's property sheets (by right clicking and selecting properties), and then click the Home Directory, Virtual Directory, or Directory tab.

•
 Click the Configuration button, and then click the App Mappings tab.

•
 Click Add, and in the Executable box, type: c:\path-to-php-dir\php.exe %s %s. You MUST have the %s %s on the end, PHP will not function properly if you fail to do this.

•
 In the Extension box, type the file name extension you want associated with PHP scripts. (You must repeat step 5 and 6 for each extension you want accociated with PHP scripts. (.php and .phtml are common.)

•
 Set up the appropriate security. (This is done in Internet Service Manager), and if your NT Server uses NTFS file system, add execute rights for I_USR_ to the directory that contains php.exe.

Windows 9x/NT and Apache 1.3.x

 You must edit your srm.conf or httpd.conf to configure Apache to work with the PHP CGI binary.

 Although there can be a few variations of configuring PHP under Apache, this one is simple enough to be used by the newcomer. Please consult the Apache Docs for further configuration directives.

•
 ScriptAlias /php/ "c:/path-to-php-dir/"
•
 AddType application/x-httpd-php .php
•
 AddType application/x-httpd-php .phtml
•
 Action application/x-httpd-php "/php/php.exe"
 To use the source code highlighting feature, simply create a PHP script file and stick this code in: <?php show_source ("original_php_script.php"); ?>. Substitute original_php_script.php with the name of the file you wish to show the source of. (this is only one way of doing it). Note: On Win-Apache all back slashes in a path statement such as: "c:\directory\file.ext", must be converted to forward slashes.

Omni HTTPd 2.0b1 for Windows

 This has got to be the easiest config there is:

•
 Step 1: Install Omni server

•
 Step 2: Right click on the blue OmniHTTPd icon in the system tray and select Properties

•
 Step 3: Click on Web Server Global Settings

•
 Step 4: On the 'External' tab, enter: virtual = .php | actual = c:\path-to-php-dir\php.exe

•
 Step 5: On the Mime tab, enter: virtual = wwwserver/stdcgi | actual = .php

•
 Step 6: Click OK

 Repeat steps 2 - 6 for each extension you want to associate with PHP.

PHP Modules

Table 2-1. PHP Modules

	php_calendar.dll
	Calendar conversion functions

	php_crypt.dll
	Crypt functions

	php_dbase.dll
	DBase functions

	php_dbm.dll
	GDBM emulation via Berkely DB2 library

	php_filepro.dll
	READ ONLY access to filepro databases

	php_gd.dll
	GD Library functions for gif manipulation

	php_hyperwave.dll
	HyperWave functions

	php_imap4r2.dll
	IMAP 4 functions

	php_ldap.dll
	LDAP functions

	php_msql1.dll
	mSQL 1 client

	php_msql2.dll
	mSQL 2 client

	php_mssql.dll
	MSSQL client (requires MSSQL DB-Libraries

	php3_mysql.dll (Built into PHP 4)
	MySQL functions

	php_nsmail.dll
	Netscape mail functions

	php_oci73.dll
	Oracle functions

	php_snmp.dll
	SNMP get and walk functions (NT only!)

	php_zlib.dll
	ZLib functions

Problems?

Read the FAQ

 Some problems are more common than others. The most common ones are listed in the PHP FAQ, found at http://www.php.net/FAQ.php

Bug reports

 If you think you have found a bug in PHP, please report it. The PHP developers probably don't know about it, and unless you report it, chances are it won't be fixed. You can report bugs using the bug-tracking system at http://www.php.net/bugs.php.

Other problems

 If you are still stuck, someone on the PHP mailing list may be able to help you. You should check out the archive first, in case someone already answered someone else who had the same problem as you. The archives are available from the support page on http://www.php.net/. To subscribe to the PHP mailing list, send an empty mail to php-general-subscribe@lists.php.net (mailto:php-general-subscribe@lists.php.net). The mailing list address is php-general@lists.php.net.

 If you want to get help on the mailing list, please try to be precise and give the necessary details about your environment (which operating system, what PHP version, what web server, if you are running PHP as CGI or a server module, etc.), and preferably enough code to make others able to reproduce and test your problem.

Chapter 3. Configuration

The configuration file

 The configuration file (called php3.ini in PHP 3.0, and simply php.ini as of PHP 4.0) is read when PHP starts up. For the server module versions of PHP, this happens only once when the web server is started. For the CGI version, it happens on every invocation.

 When using PHP as an Apache module, you can also change the configuration settings using directives in Apache configuration files and .htaccess files.

 With PHP 3.0, there are Apache directives that correspond to each configuration setting in the php3.ini name, except the name is prefixed by "php3_".

 With PHP 4.0, there are just a few Apache directives that allow you to change the PHP configuration settings.

 php_value name value

 This sets the value of the specified variable.

 php_flag name on|off

 This is used to set a Boolean configuration option.

 php_admin_value name value

 This sets the value of the specified variable. "Admin" configuration settings can only be set from within the main Apache configuration files, and not from .htaccess files.

 php_admin_flag name on|off

 This is used to set a Boolean configuration option.

 You can view the settings of the configuration values in the output of phpinfo(). You can also access the values of individial configuration settings using get_cfg_var().

General Configuration Directives

 asp_tags boolean

 Enables the use of ASP-like <% %> tags in addition to the usual <?php ?> tags. This includes the variable-value printing shorthand of <%= $value %>. For more information, see Escaping from HTML.

Note: Support for ASP-style tags was added in 3.0.4.

 auto_append_file string

 Specifies the name of a file that is automatically parsed after the main file. The file is included as if it was called with the include() function, so include_path is used.

 The special value none disables auto-appending.

Note: If the script is terminated with exit(), auto-append will not occur.

 auto_prepend_file string

 Specifies the name of a file that is automatically parsed before the main file. The file is included as if it was called with the include() function, so include_path is used.

 The special value none disables auto-prepending.

 cgi_ext string

 display_errors boolean

 This determines whether errors should be printed to the screen as part of the HTML output or not.

 doc_root string

 PHP's "root directory" on the server. Only used if non-empty. If PHP is configured with safe mode, no files outside this directory are served.

 engine boolean

 This directive is really only useful in the Apache module version of PHP. It is used by sites that would like to turn PHP parsing on and off on a per-directory or per-virtual server basis. By putting engine off in the appropriate places in the httpd.conf file, PHP can be enabled or disabled.

 error_log string

 Name of file where script errors should be logged. If the special value syslog is used, the errors are sent to the system logger instead. On UNIX, this means syslog(3) and on Windows NT it means the event log. The system logger is not supported on Windows 95.

 error_reporting integer

 Set the error reporting level. The parameter is an integer representing a bit field. Add the values of the error reporting levels you want.

Table 3-1. Error Reporting Levels

	bit value
	enabled reporting

	1
	normal errors

	2
	normal warnings

	4
	parser errors

	8
	non-critical style-related warnings

 The default value for this directive is 7 (normal errors, normal warnings and parser errors are shown).

 open_basedir string

 Limit the files that can be opened by PHP to the specified directory-tree.

 When a script tries to open a file with, for example, fopen or gzopen, the location of the file is checked. When the file is outside the specified directory-tree, PHP will refuse to open it. All symbolic links are resolved, so it's not possible to avoid this restriction with a symlink.

 The special value . indicates that the directory in which the script is stored will be used as base-directory.

 Under Windows, separate the directories with a semicolon. On all other systems, separate the directories with a colon. As an Apache module, open_basedir paths from parent directories are now automatically inherited.

Note: Support for multiple directories was added in 3.0.7.

 The default is to allow all files to be opened.

 gpc_order string

 Set the order of GET/POST/COOKIE variable parsing. The default setting of this directive is "GPC". Setting this to "GP", for example, will cause PHP to completely ignore cookies and to overwrite any GET method variables with POST-method variables of the same name.

 ignore_user_abort string

 On by default. If changed to Off scripts will be terminated as soon as they try to output something after a client has aborted their connection. ignore_user_abort().

 include_path string

 Specifies a list of directories where the require(), include() and fopen_with_path() functions look for files. The format is like the system's PATH environment variable: a list of directories separated with a colon in UNIX or semicolon in Windows.

Example 3-1. UNIX include_path

include_path=.:/home/httpd/php-lib

Example 3-2. Windows include_path

include_path=".;c:\www\phplib"

 The default value for this directive is . (only the current directory).

 isapi_ext string

 log_errors boolean

 Tells whether script error messages should be logged to the server's error log. This option is thus server-specific.

 magic_quotes_gpc boolean

 Sets the magic_quotes state for GPC (Get/Post/Cookie) operations. When magic_quotes are on, all ' (single-quote), " (double quote), \ (backslash) and NUL's are escaped with a backslash automatically. If magic_quotes_sybase is also on, a single-quote is escaped with a single-quote instead of a backslash.

 magic_quotes_runtime boolean

 If magic_quotes_runtime is enabled, most functions that return data from any sort of external source including databases and text files will have quotes escaped with a backslash. If magic_quotes_sybase is also on, a single-quote is escaped with a single-quote instead of a backslash.

 magic_quotes_sybase boolean

 If magic_quotes_sybase is also on, a single-quote is escaped with a single-quote instead of a backslash if magic_quotes_gpc or magic_quotes_runtime is enabled.

 max_execution_time integer

 This sets the maximum time in seconds a script is allowed to take before it is terminated by the parser. This helps prevent poorly written scripts from tieing up the server.

 memory_limit integer

 This sets the maximum amount of memory in bytes that a script is allowed to allocate. This helps prevent poorly written scripts for eating up all available memory on a server.

 nsapi_ext string

 short_open_tag boolean

 Tells whether the short form (<? ?>of PHP's open tag should be allowed. If you want to use PHP in combination with XML, you have to disable this option. If disabled, you must use the long form of the open tag (<?php ?>).

 sql.safe_mode boolean

 track_errors boolean

 If enabled, the last error message will always be present in the global variable $php_errormsg.

 track_vars boolean

 If enabled, GET, POST and cookie input can be found in the global associative arrays $HTTP_GET_VARS, $HTTP_POST_VARS and $HTTP_COOKIE_VARS, respectively.

 upload_tmp_dir string

 The temporary directory used for storing files when doing file upload. Must be writable by whatever user PHP is running as.

 user_dir string

 The base name of the directory used on a user's home directory for PHP files, for example public_html.

 warn_plus_overloading boolean

 If enabled, this option makes PHP output a warning when the plus (+) operator is used on strings. This is to make it easier to find scripts that need to be rewritten to using the string concatenator instead (.).

Mail Configuration Directives

 SMTP string

 DNS name or IP address of the SMTP server PHP under Windows should use for mail sent with the mail() function.

 sendmail_from string

 Which "From:" mail address should be used in mail sent from PHP under Windows.

 sendmail_path string

 Where the sendmail program can be found, usually /usr/sbin/sendmail or /usr/lib/sendmail configure does an honest attempt of locating this one for you and set a default, but if it fails, you can set it here.

 Systems not using sendmail should set this directive to the sendmail wrapper/replacement their mail system offers, if any. For example, Qmail (http://www.qmail.org/) users can normally set it to /var/qmail/bin/sendmail.

Safe Mode Configuration Directives

 safe_mode boolean

 Whether to enable PHP's safe mode. Read the Security chapter for more more information.

 safe_mode_exec_dir string

 If PHP is used in safe mode, system() and the other functions executing system programs refuse to start programs that are not in this directory.

Debugger Configuration Directives

 debugger.host string

 DNS name or IP address of host used by the debugger.

 debugger.port string

 Port number used by the debugger.

 debugger.enabled boolean

 Whether the debugger is enabled.

Extension Loading Directives

 enable_dl boolean

 This directive is really only useful in the Apache module version of PHP. You can turn dynamic loading of PHP extensions with dl() on and off per virtual server or per directory.

 The main reason for turning dynamic loading off is security. With dynamic loading, it's possible to ignore all the safe_mode and open_basedir restrictions.

 The default is to allow dynamic loading, except when using safe-mode. In safe-mode, it's always imposible to use dl().

 extension_dir string

 In what directory PHP should look for dynamically loadable extensions.

 extension string

 Which dynamically loadable extensions to load when PHP starts up.

MySQL Configuration Directives

 mysql.allow_persistent boolean

 Whether to allow persistent MySQL connections.

 mysql.default_host string

 The default server host to use when connecting to the database server if no other host is specified.

 mysql.default_user string

 The default user name to use when connecting to the database server if no other name is specified.

 mysql.default_password string

 The default password to use when connecting to the database server if no other password is specified.

 mysql.max_persistent integer

 The maximum number of persistent MySQL connections per process.

 mysql.max_links integer

 The maximum number of MySQL connections per process, including persistent connections.

mSQL Configuration Directives

 msql.allow_persistent boolean

 Whether to allow persistent mSQL connections.

 msql.max_persistent integer

 The maximum number of persistent mSQL connections per process.

 msql.max_links integer

 The maximum number of mSQL connections per process, including persistent connections.

Postgres Configuration Directives

 pgsql.allow_persistent boolean

 Whether to allow persistent Postgres connections.

 pgsql.max_persistent integer

 The maximum number of persistent Postgres connections per process.

 pgsql.max_links integer

 The maximum number of Postgres connections per process, including persistent connections.

Sybase Configuration Directives

 sybase.allow_persistent boolean

 Whether to allow persistent Sybase connections.

 sybase.max_persistent integer

 The maximum number of persistent Sybase connections per process.

 sybase.max_links integer

 The maximum number of Sybase connections per process, including persistent connections.

Sybase-CT Configuration Directives

 sybct.allow_persistent boolean

 Whether to allow persistent Sybase-CT connections. The default is on.

 sybct.max_persistent integer

 The maximum number of persistent Sybase-CT connections per process. The default is -1 meaning unlimited.

 sybct.max_links integer

 The maximum number of Sybase-CT connections per process, including persistent connections. The default is -1 meaning unlimited.

 sybct.min_server_severity integer

 Server messages with severity greater than or equal to sybct.min_server_severity will be reported as warnings. This value can also be set from a script by calling sybase_min_server_severity(). The default is 10 which reports errors of information severity or greater.

 sybct.min_client_severity integer

 Client library messages with severity greater than or equal to sybct.min_client_severity will be reported as warnings. This value can also be set from a script by calling sybase_min_client_severity(). The default is 10 which effectively disables reporting.

 sybct.login_timeout integer

 The maximum time in seconds to wait for a connection attempt to succeed before returning failure. Note that if max_execution_time has been exceeded when a connection attempt times out, your script will be terminated before it can take action on failure. The default is one minute.

 sybct.timeout integer

 The maximum time in seconds to wait for a select_db or query operation to succeed before returning failure. Note that if max_execution_time has been exceeded when am operation times out, your script will be terminated before it can take action on failure. The default is no limit.

 sybct.hostname string

 The name of the host you claim to be connecting from, for display by sp_who. The default is none.

Informix Configuration Directives

 ifx.allow_persistent boolean

 Whether to allow persistent Informix connections.

 ifx.max_persistent integer

 The maximum number of persistent Informix connections per process.

 ifx.max_links integer

 The maximum number of Informix connections per process, including persistent connections.

 ifx.default_host string

 The default host to connect to when no host is specified in ifx_connect() or ifx_pconnect().

 ifx.default_user string

 The default user id to use when none is specified in ifx_connect() or ifx_pconnect().

 ifx.default_password string

 The default password to use when none is specified in ifx_connect() or ifx_pconnect().

 ifx.blobinfile boolean

 Set to true if you want to return blob columns in a file, false if you want them in memory. You can override the setting at runtime with ifx_blobinfile_mode().

 ifx.textasvarchar boolean

 Set to true if you want to return TEXT columns as normal strings in select statements, false if you want to use blob id parameters. You can override the setting at runtime with ifx_textasvarchar().

 ifx.byteasvarchar boolean

 Set to true if you want to return BYTE columns as normal strings in select queries, false if you want to use blob id parameters. You can override the setting at runtime with ifx_textasvarchar().

 ifx.charasvarchar boolean

 Set to true if you want to trim trailing spaces from CHAR columns when fetching them.

 ifx.nullformat boolean

 Set to true if you want to return NULL columns as the literal string "NULL", false if you want them returned as the empty string "". You can override this setting at runtime with ifx_nullformat().

BC Math Configuration Directives

 bcmath.scale integer

 Number of decimal digits for all bcmath functions.

Browser Capability Configuration Directives

 browscap string

 Name of browser capabilities file. See also get_browser().

Unified ODBC Configuration Directives

 uodbc.default_db string

 ODBC data source to use if none is specified in odbc_connect() or odbc_pconnect().

 uodbc.default_user string

 User name to use if none is specified in odbc_connect() or odbc_pconnect().

 uodbc.default_pw string

 Password to use if none is specified in odbc_connect() or odbc_pconnect().

 uodbc.allow_persistent boolean

 Whether to allow persistent ODBC connections.

 uodbc.max_persistent integer

 The maximum number of persistent ODBC connections per process.

 uodbc.max_links integer

 The maximum number of ODBC connections per process, including persistent connections.

Chapter 4. Security

 PHP is a powerful language and the interpreter, whether included in a web server as a module or executed as a separate CGI binary, is able to access files, execute commands and open network connections on the server. These properties make anything run on a web server insecure by default. PHP is designed specifically to be a more secure language for writing CGI programs than Perl or C, and with correct selection of compile-time and runtime configuration options it gives you exactly the combination of freedom and security you need.

 As there are many different ways of utilizing PHP, there are many configuration options controlling its behaviour. A large selection of options guarantees you can use PHP for a lot of purposes, but it also means there are combinations of these options and server configurations that result in an insecure setup. This chapter explains the different configuration option combinations and the situations they can be safely used.

CGI binary

Possible attacks

 Using PHP as a CGI binary is an option for setups that for some reason do not wish to integrate PHP as a module into server software (like Apache), or will use PHP with different kinds of CGI wrappers to create safe chroot and setuid environments for scripts. This setup usually involves installing executable PHP binary to the web server cgi-bin directory. CERT advisory CA-96.11 (http://www.cert.org/advisories/CA-96.11.interpreters_in_cgi_bin_dir.html) recommends against placing any interpreters into cgi-bin. Even if the PHP binary can be used as a standalone interpreter, PHP is designed to prevent the attacks this setup makes possible:

•
 Accessing system files: http://my.host/cgi-bin/php?/etc/passwd

 The query information in a url after the question mark (?) is passed as command line arguments to the interpreter by the CGI interface. Usually interpreters open and execute the file specified as the first argument on the command line.

 When invoked as a CGI binary, PHP refuses to interpret the command line arguments.

•
 Accessing any web document on server: http://my.host/cgi-bin/php/secret/doc.html

 The path information part of the url after the PHP binary name, /secret/doc.html is conventionally used to specify the name of the file to be opened and interpreted by the CGI program. Usually some web server configuration directives (Apache: Action) are used to redirect requests to documents like http://my.host/secret/script.php3 to the PHP interpreter. With this setup, the web server first checks the access permissions to the directory /secret, and after that creates the redirected request http://my.host/cgi-bin/php/secret/script.php3. Unfortunately, if the request is originally given in this form, no access checks are made by web server for file /secret/script.php3, but only for the /cgi-bin/php file. This way any user able to access /cgi-bin/php is able to access any protected document on the web server.

 In PHP, compile-time configuration option --enable-force-cgi-redirect and runtime configuration directives doc_root and user_dir can be used to prevent this attack, if the server document tree has any directories with access restrictions. See below for full the explanation of the different combinations.

Case 1: only public files served

 If your server does not have any content that is not restricted by password or ip based access control, there is no need for these configuration options. If your web server does not allow you to do redirects, or the server does not have a way to communicate to the PHP binary that the request is a safely redirected request, you can specify the option --disable-force-cgi-redirect to the configure script. You still have to make sure your PHP scripts do not rely on one or another way of calling the script, neither by directly http://my.host/cgi-bin/php/dir/script.php3 nor by redirection http://my.host/dir/script.php3.

 Redirection can be configured in Apache by using AddHandler and Action directives (see below).

Case 2: using --enable-force-cgi-redirect

 This compile-time option prevents anyone from calling PHP directly with a url like http://my.host/cgi-bin/php/secretdir/script.php3. Instead, PHP will only parse in this mode if it has gone through a web server redirect rule.

 Usually the redirection in the Apache configuration is done with the following directives:

Action php3-script /cgi-bin/php

AddHandler php3-script .php3

 This option has only been tested with the Apache web server, and relies on Apache to set the non-standard CGI environment variable REDIRECT_STATUS on redirected requests. If your web server does not support any way of telling if the request is direct or redirected, you cannot use this option and you must use one of the other ways of running the CGI version documented here.

Case 3: setting doc_root or user_dir

 To include active content, like scripts and executables, in the web server document directories is sometimes consider an insecure practice. If, because of some configuration mistake, the scripts are not executed but displayed as regular HTML documents, this may result in leakage of intellectual property or security information like passwords. Therefore many sysadmins will prefer setting up another directory structure for scripts that are accessible only through the PHP CGI, and therefore always interpreted and not displayed as such.

 Also if the method for making sure the requests are not redirected, as described in the previous section, is not available, it is necessary to set up a script doc_root that is different from web document root.

 You can set the PHP script document root by the configuration directive doc_root in the configuration file, or you can set the environment variable PHP_DOCUMENT_ROOT. If it is set, the CGI version of PHP will always construct the file name to open with this doc_root and the path information in the request, so you can be sure no script is executed outside this directory (except for user_dir below).

 Another option usable here is user_dir. When user_dir is unset, only thing controlling the opened file name is doc_root. Opening an url like http://my.host/~user/doc.php3 does not result in opening a file under users home directory, but a file called ~user/doc.php3 under doc_root (yes, a directory name starting with a tilde [~]).

 If user_dir is set to for example public_php, a request like http://my.host/~user/doc.php3 will open a file called doc.php3 under the directory named public_php under the home directory of the user. If the home of the user is /home/user, the file executed is /home/user/public_php/doc.php3.

 user_dir expansion happens regardless of the doc_root setting, so you can control the document root and user directory access separately.

Case 4: PHP parser outside of web tree

 A very secure option is to put the PHP parser binary somewhere outside of the web tree of files. In /usr/local/bin, for example. The only real downside to this option is that you will now have to put a line similar to:

#!/usr/local/bin/php

 as the first line of any file containing PHP tags. You will also need to make the file executable. That is, treat it exactly as you would treat any other CGI script written in Perl or sh or any other common scripting language which uses the #! shell-escape mechanism for launching itself.

 To get PHP to handle PATH_INFO and PATH_TRANSLATED information correctly with this setup, the php parser should be compiled with the --enable-discard-path configure option.

Apache module

 When PHP is used as an Apache module it inherits Apache's user permissions (typically those of the "nobody" user).

Part II. Language Reference

Chapter 5. Basic syntax

Escaping from HTML

 There are four ways of escaping from HTML and entering "PHP code mode":

Example 5-1. Ways of escaping from HTML

1. <? echo ("this is the simplest, an SGML processing instruction\n"); ?>

2. <?php echo("if you want to serve XML documents, do like this\n"); ?>

3. <script language="php">

 echo ("some editors (like FrontPage) don't

 like processing instructions");

 </script>

4. <% echo ("You may optionally use ASP-style tags"); %>

 <%= $variable; # This is a shortcut for "<%echo .." %>

 The first way is only available if short tags have been enabled. This can be done via the short_tags() function, by enabling the short_open_tag configuration setting in the PHP config file, or by compiling PHP with the --enable-short-tags option to configure.

 The fourth way is only available if ASP-style tags have been enabled using the asp_tags configuration setting.

Note: Support for ASP-style tags was added in 3.0.4.

 The closing tag for the block will include the immediately trailing newline if one is present.

Instruction separation

 Instructions are separated the same as in C or perl - terminate each statement with a semicolon.

 The closing tag (?>) also implies the end of the statement, so the following are equivalent:

<?php

 echo "This is a test";

?>

<?php echo "This is a test" ?>

Comments

 PHP supports 'C', 'C++' and Unix shell-style comments. For example:

<?php

 echo "This is a test"; // This is a one-line c++ style comment

 /* This is a multi line comment

 yet another line of comment */

 echo "This is yet another test";

 echo "One Final Test"; # This is shell-style style comment

?>

 The "one-line" comment styles actually only comment to the end of the line or the current block of PHP code, whichever comes first.

<h1>This is an <?# echo "simple";?> example.</h1>

<p>The header above will say 'This is an example'.

 You should be careful not to nest 'C' style comments, which can happen when commenting out large blocks.

<?php

 /*

 echo "This is a test"; /* This comment will cause a problem */

 */

?>

Chapter 6. Types

 PHP supports the following types:

•
 array

•
 floating-point numbers
•
 integer

•
 object

•
 string

 The type of a variable is usually not set by the programmer; rather, it is decided at runtime by PHP depending on the context in which that variable is used.

 If you would like to force a variable to be converted to a certain type, you may either cast the variable or use the settype() function on it.

 Note that a variable may behave in different manners in certain situations, depending on what type it is at the time. For more information, see the section on Type Juggling.

Integers

 Integers can be specified using any of the following syntaxes:

$a = 1234; # decimal number

$a = -123; # a negative number

$a = 0123; # octal number (equivalent to 83 decimal)

$a = 0x12; # hexadecimal number (equivalent to 18 decimal)

 The size of an integer is platform-dependent, although a maximum value of about 2 billion is the usual value (that's 32 bits signed).

Floating point numbers

 Floating point numbers ("doubles") can be specified using any of the following syntaxes:

$a = 1.234; $a = 1.2e3;

 The size of a floating point number is platform-dependent, although a maximum of ~1.8e308 with a precision of roughly 14 decimal digits is a common value (that's 64 bit IEEE format).

Warning

 It is quite usual that simple decimal fractions like 0.1 or 0.7 cannot be converted into their internal binary counterparts without a little loss of precision. This can lead to confusing results: for example, floor((0.1+0.7)*10) will usually return 7 instead of the expected 8 as the result of the internal representation really being something like 7.9999999999....

 This is related to the fact that it is impossible to exactly express some fractions in decimal notation with a finite number of digits. For instance, 1/3 in decimal form becomes 0.3333333. . ..

 So never trust floating number results to the last digit and never compare floating point numbers for equality. If you really need higher precision, you should use the arbitrary precision math functions instead.

Strings

 Strings can be specified using one of two sets of delimiters.

 If the string is enclosed in double-quotes ("), variables within the string will be expanded (subject to some parsing limitations). As in C and Perl, the backslash ("\") character can be used in specifying special characters:

Table 6-1. Escaped characters

	sequence
	meaning

	\n
	linefeed (LF or 0x0A in ASCII)

	\r
	carriage return (CR or 0x0D in ASCII)

	\t
	horizontal tab (HT or 0x09 in ASCII)

	\\
	backslash

	\$
	dollar sign

	\"
	double-quote

	\[0-7]{1,3}
	 the sequence of characters matching the regular expression is a character in octal notation

	\x[0-9A-Fa-f]{1,2}
	 the sequence of characters matching the regular expression is a character in hexadecimal notation

 You can escape any other character, but a warning will be issued at the highest warning level.

 The second way to delimit a string uses the single-quote ("'") character. When a string is enclosed in single quotes, the only escapes that will be understood are "\\" and "\'". This is for convenience, so that you can have single-quotes and backslashes in a single-quoted string. Variables will not be expanded inside a single-quoted string.

 Another way to delimit strings is by using here doc syntax ("<<<"). One should provide an identifier after <<<, then the string, and then the same identifier to close the quotation. The closing identifier must begin in the first column of the line.

 Here doc text behaves just like a double-quoted string, without the double-quotes. This means that you do not need to escape quotes in your here docs, but you can still use the escape codes listed above. Variables are expanded, but the same care must be taken when expressing complex variables inside a here doc as with strings.

Example 6-1. Here doc string quoting example

<?php

$str = <<<EOD

Example of string

spanning multiple lines

using heredoc syntax.

EOD;

/* More complex example, with variables. */

class foo {

 var $foo;

 var $bar;

 function foo() {

 $this->foo = 'Foo';

 $this->bar = array('Bar1', 'Bar2', 'Bar3');

 }

}

$foo = new foo();

$name = 'MyName';

echo <<<EOT

My name is "$name". I am printing some $foo->foo.

Now, I am printing some {$foo->bar[1]}.

This should print a capital 'A': \x41

EOT;

?>

Note: Here doc support was added in PHP 4.

 Strings may be concatenated using the '.' (dot) operator. Note that the '+' (addition) operator will not work for this. Please see String operators for more information.

 Characters within strings may be accessed by treating the string as a numerically-indexed array of characters, using C-like syntax. See below for examples.

Example 6-2. Some string examples

<?php

/* Assigning a string. */

$str = "This is a string";

/* Appending to it. */

$str = $str . " with some more text";

/* Another way to append, includes an escaped newline. */

$str .= " and a newline at the end.\n";

/* This string will end up being '<p>Number: 9</p>' */

$num = 9;

$str = "<p>Number: $num</p>";

/* This one will be '<p>Number: $num</p>' */

$num = 9;

$str = '<p>Number: $num</p>';

/* Get the first character of a string */

$str = 'This is a test.';

$first = $str[0];

/* Get the last character of a string. */

$str = 'This is still a test.';

$last = $str[strlen($str)-1];

?>

String conversion

 When a string is evaluated as a numeric value, the resulting value and type are determined as follows.

 The string will evaluate as a double if it contains any of the characters '.', 'e', or 'E'. Otherwise, it will evaluate as an integer.

 The value is given by the initial portion of the string. If the string starts with valid numeric data, this will be the value used. Otherwise, the value will be 0 (zero). Valid numeric data is an optional sign, followed by one or more digits (optionally containing a decimal point), followed by an optional exponent. The exponent is an 'e' or 'E' followed by one or more digits.

 When the first expression is a string, the type of the variable will depend on the second expression.

$foo = 1 + "10.5"; // $foo is double (11.5)

$foo = 1 + "-1.3e3"; // $foo is double (-1299)

$foo = 1 + "bob-1.3e3"; // $foo is integer (1)

$foo = 1 + "bob3"; // $foo is integer (1)

$foo = 1 + "10 Small Pigs"; // $foo is integer (11)

$foo = 1 + "10 Little Piggies"; // $foo is integer (11)

$foo = "10.0 pigs " + 1; // $foo is integer (11)

$foo = "10.0 pigs " + 1.0; // $foo is double (11)

 For more information on this conversion, see the Unix manual page for strtod(3).

 If you would like to test any of the examples in this section, you can cut and paste the examples and insert the following line to see for yourself what's going on:

echo "\$foo==$foo; type is " . gettype ($foo) . "
\n";

Arrays

 Arrays actually act like both hash tables (associative arrays) and indexed arrays (vectors).

Single Dimension Arrays

 PHP supports both scalar and associative arrays. In fact, there is no difference between the two. You can create an array using the list() or array() functions, or you can explicitly set each array element value.

$a[0] = "abc";

$a[1] = "def";

$b["foo"] = 13;

 You can also create an array by simply adding values to the array. When you assign a value to an array variable using empty brackets, the value will be added onto the end of the array.

$a[] = "hello"; // $a[2] == "hello"

$a[] = "world"; // $a[3] == "world"

 Arrays may be sorted using the asort(), arsort(), ksort(), rsort(), sort(), uasort(), usort(), and uksort() functions depending on the type of sort you want.

 You can count the number of items in an array using the count() function.

 You can traverse an array using next() and prev() functions. Another common way to traverse an array is to use the each() function.

Multi-Dimensional Arrays

 Multi-dimensional arrays are actually pretty simple. For each dimension of the array, you add another [key] value to the end:

$a[1] = $f; # one dimensional examples

$a["foo"] = $f;

$a[1][0] = $f; # two dimensional

$a["foo"][2] = $f; # (you can mix numeric and associative indices)

$a[3]["bar"] = $f; # (you can mix numeric and associative indices)

$a["foo"][4]["bar"][0] = $f; # four dimensional!

 In PHP3 it is not possible to reference multidimensional arrays directly within strings. For instance, the following will not have the desired result:

$a[3]['bar'] = 'Bob';

echo "This won't work: $a[3][bar]";

 In PHP3, the above will output This won't work: Array[bar]. The string concatenation operator, however, can be used to overcome this:

$a[3]['bar'] = 'Bob';

echo "This will work: " . $a[3][bar];

 In PHP4, however, the whole problem may be circumvented by enclosing the array reference (inside the string) in curly braces:

$a[3]['bar'] = 'Bob';

echo "This will work: {$a[3][bar]}";

 You can "fill up" multi-dimensional arrays in many ways, but the trickiest one to understand is how to use the array() command for associative arrays. These two snippets of code fill up the one-dimensional array in the same way:

Example 1:

$a["color"] = "red";

$a["taste"] = "sweet";

$a["shape"] = "round";

$a["name"] = "apple";

$a[3] = 4;

Example 2:

$a = array(

 "color" => "red",

 "taste" => "sweet",

 "shape" => "round",

 "name" => "apple",

 3 => 4

);

 The array() function can be nested for multi-dimensional arrays:

<?

$a = array(

 "apple" => array(

 "color" => "red",

 "taste" => "sweet",

 "shape" => "round"

),

 "orange" => array(

 "color" => "orange",

 "taste" => "tart",

 "shape" => "round"

),

 "banana" => array(

 "color" => "yellow",

 "taste" => "paste-y",

 "shape" => "banana-shaped"

)

);

echo $a["apple"]["taste"]; # will output "sweet"

?>

Objects

Object Initialization

 To initialize an object, you use the new statement to instantiate the object to a variable.

<?php

class foo {

 function do_foo() {

 echo "Doing foo.";

 }

}

$bar = new foo;

$bar->do_foo();

?>

 For a full discussion, please read the section Classes and Objects.

Type Juggling

 PHP does not require (or support) explicit type definition in variable declaration; a variable's type is determined by the context in which that variable is used. That is to say, if you assign a string value to variable var, var becomes a string. If you then assign an integer value to var, it becomes an integer.

 An example of PHP's automatic type conversion is the addition operator '+'. If any of the operands is a double, then all operands are evaluated as doubles, and the result will be a double. Otherwise, the operands will be interpreted as integers, and the result will also be an integer. Note that this does NOT change the types of the operands themselves; the only change is in how the operands are evaluated.

$foo = "0"; // $foo is string (ASCII 48)

$foo++; // $foo is the string "1" (ASCII 49)

$foo += 1; // $foo is now an integer (2)

$foo = $foo + 1.3; // $foo is now a double (3.3)

$foo = 5 + "10 Little Piggies"; // $foo is integer (15)

$foo = 5 + "10 Small Pigs"; // $foo is integer (15)

 If the last two examples above seem odd, see String conversion.

 If you wish to force a variable to be evaluated as a certain type, see the section on Type casting. If you wish to change the type of a variable, see settype().

 If you would like to test any of the examples in this section, you can cut and paste the examples and insert the following line to see for yourself what's going on:

echo "\$foo==$foo; type is " . gettype ($foo) . "
\n";

Note: The behaviour of an automatic conversion to array is currently undefined.

$a = 1; // $a is an integer

$a[0] = "f"; // $a becomes an array, with $a[0] holding "f"

While the above example may seem like it should clearly result in $a becoming an array, the first element of which is 'f', consider this:

$a = "1"; // $a is a string

$a[0] = "f"; // What about string offsets? What happens?

Since PHP supports indexing into strings via offsets using the same syntax as array indexing, the example above leads to a problem: should $a become an array with its first element being "f", or should "f" become the first character of the string $a?

For this reason, as of PHP 3.0.12 and PHP 4.0b3-RC4, the result of this automatic conversion is considered to be undefined. Fixes are, however, being discussed.

Type Casting

 Type casting in PHP works much as it does in C: the name of the desired type is written in parentheses before the variable which is to be cast.

$foo = 10; // $foo is an integer

$bar = (double) $foo; // $bar is a double

 The casts allowed are:

•
(int), (integer) - cast to integer

•
(real), (double), (float) - cast to double

•
(string) - cast to string

•
(array) - cast to array

•
(object) - cast to object

 Note that tabs and spaces are allowed inside the parentheses, so the following are functionally equivalent:

$foo = (int) $bar;

$foo = (int) $bar;

 It may not be obvious exactly what will happen when casting between certain types. For instance, the following should be noted.

 When casting from a scalar or a string variable to an array, the variable will become the first element of the array:

$var = 'ciao';

$arr = (array) $var;

echo $arr[0]; // outputs 'ciao'

 When casting from a scalar or a string variable to an object, the variable will become an attribute of the object; the attribute name will be 'scalar':

$var = 'ciao';

$obj = (object) $var;

echo $obj->scalar; // outputs 'ciao'

Chapter 7. Variables

Basics

 Variables in PHP are represented by a dollar sign followed by the name of the variable. The variable name is case-sensitive.

 Variable names follow the same rules as other labels in PHP. A valid variable name starts with a letter or underscore, followed by any number of letters, numbers, or underscores. As a regular expression, it would be expressed thus: '[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*'

Note: For our purposes here, a letter is a-z, A-Z, and the ASCII characters from 127 through 255 (0x7f-0xff).

$var = "Bob";

$Var = "Joe";

echo "$var, $Var"; // outputs "Bob, Joe"

$4site = 'not yet'; // invalid; starts with a number

$_4site = 'not yet'; // valid; starts with an underscore

$täyte = 'mansikka'; // valid; 'ä' is ASCII 228.

 In PHP3, variables are always assigned by value. That is to say, when you assign an expression to a variable, the entire value of the original expression is copied into the destination variable. This means, for instance, that after assigning one variable's value to another, changing one of those variables will have no effect on the other. For more information on this kind of assignment, see Expressions.

 PHP4 offers another way to assign values to variables: assign by reference. This means that the new variable simply references (in other words, "becomes an alias for" or "points to") the original variable. Changes to the new variable affect the original, and vice versa. This also means that no copying is performed; thus, the assignment happens more quickly. However, any speedup will likely be noticed only in tight loops or when assigning large arrays or objects.

 To assign by reference, simply prepend an ampersand (&) to the beginning of the variable which is being assigned (the source variable). For instance, the following code snippet outputs 'My name is Bob' twice:

<?php

$foo = 'Bob'; // Assign the value 'Bob' to $foo

$bar = &$foo; // Reference $foo via $bar.

$bar = "My name is $bar"; // Alter $bar...

echo $foo; // $foo is altered too.

echo $bar;

?>

 One important thing to note is that only named variables may be assigned by reference.

<?php

$foo = 25;

$bar = &$foo; // This is a valid assignment.

$bar = &(24 * 7); // Invalid; references an unnamed expression.

function test() {

 return 25;

}

$bar = &test(); // Invalid.

?>

Predefined variables

 PHP provides a large number of predefined variables to any script which it runs. Many of these variables, however, cannot be fully documented as they are dependent upon which server is running, the version and setup of the server, and other factors. Some of these variables will not be available when PHP is run on the command-line.

 Despite these factors, here is a list of predefined variables available under a stock installation of PHP 3 running as a module under a stock installation of Apache (http://www.apache.org/) 1.3.6.

 For a list of all predefined variables (and lots of other useful information), please see (and use) phpinfo().

Note: This list is neither exhaustive nor intended to be. It is simply a guideline as to what sorts of predefined variables you can expect to have access to in your script.

Apache variables

 These variables are created by the Apache (http://www.apache.org/) webserver. If you are running another webserver, there is no guarantee that it will provide the same variables; it may omit some, or provide others not listed here. That said, a large number of these variables are accounted for in the CGI 1.1 specification (http://hoohoo.ncsa.uiuc.edu/cgi/env.html), so you should be able to expect those.

 Note that few, if any, of these will be available (or indeed have any meaning) if running PHP on the command line.

GATEWAY_INTERFACE

 What revision of the CGI specification the server is using; i.e. 'CGI/1.1'.

SERVER_NAME

 The name of the server host under which the current script is executing. If the script is running on a virtual host, this will be the value defined for that virtual host.

SERVER_SOFTWARE

 Server identification string, given in the headers when responding to requests.

SERVER_PROTOCOL

 Name and revision of the information protocol via which the page was requested; i.e. 'HTTP/1.0';

REQUEST_METHOD

 Which request method was used to access the page; i.e. 'GET', 'HEAD', 'POST', 'PUT'.

QUERY_STRING

 The query string, if any, via which the page was accessed.

DOCUMENT_ROOT

 The document root directory under which the current script is executing, as defined in the server's configuration file.

HTTP_ACCEPT

 Contents of the Accept: header from the current request, if there is one.

HTTP_ACCEPT_CHARSET

 Contents of the Accept-Charset: header from the current request, if there is one. Example: 'iso-8859-1,*,utf-8'.

HTTP_ENCODING

 Contents of the Accept-Encoding: header from the current request, if there is one. Example: 'gzip'.

HTTP_ACCEPT_LANGUAGE

 Contents of the Accept-Language: header from the current request, if there is one. Example: 'en'.

HTTP_CONNECTION

 Contents of the Connection: header from the current request, if there is one. Example: 'Keep-Alive'.

HTTP_HOST

 Contents of the Host: header from the current request, if there is one.

HTTP_REFERER

 The address of the page (if any) which referred the browser to the current page. This is set by the user's browser; not all browsers will set this.

HTTP_USER_AGENT

 Contents of the User_Agent: header from the current request, if there is one. This is a string denoting the browser software being used to view the current page; i.e. Mozilla/4.5 [en] (X11; U; Linux 2.2.9 i586). Among other things, you can use this value with get_browser() to tailor your page's functionality to the capabilities of the user's browser.

REMOTE_ADDR

 The IP address from which the user is viewing the current page.

REMOTE_PORT

 The port being used on the user's machine to communicate with the web server.

SCRIPT_FILENAME

 The absolute pathname of the currently executing script.

SERVER_ADMIN

 The value given to the SERVER_ADMIN (for Apache) directive in the web server configuration file. If the script is running on a virtual host, this will be the value defined for that virtual host.

SERVER_PORT

 The port on the server machine being used by the web server for communication. For default setups, this will be '80'; using SSL, for instance, will change this to whatever your defined secure HTTP port is.

SERVER_SIGNATURE

 String containing the server version and virtual host name which are added to server-generated pages, if enabled.

PATH_TRANSLATED

 Filesystem- (not document root-) based path to the current script, after the server has done any virtual-to-real mapping.

SCRIPT_NAME

 Contains the current script's path. This is useful for pages which need to point to themselves.

REQUEST_URI

 The URI which was given in order to access this page; for instance, '/index.html'.

Environment variables

 These variables are imported into PHP's global namespace from the environment under which the PHP parser is running. Many are provided by the shell under which PHP is running and different systems are likely running different kinds of shells, a definitive list is impossible. Please see your shell's documentation for a list of defined environment variables.

 Other environment variables include the CGI variables, placed there regardless of whether PHP is running as a server module or CGI processor.

PHP variables

 These variables are created by PHP itself.

argv

 Array of arguments passed to the script. When the script is run on the command line, this gives C-style access to the command line parameters. When called via the GET method, this will contain the query string.

argc

 Contains the number of command line parameters passed to the script (if run on the command line).

PHP_SELF

 The filename of the currently executing script, relative to the document root. If PHP is running as a command-line processor, this variable is not available.

HTTP_COOKIE_VARS

 An associative array of variables passed to the current script via HTTP cookies. Only available if variable tracking has been turned on via either the track_vars configuration directive or the <?php_track_vars?> directive.

HTTP_GET_VARS

 An associative array of variables passed to the current script via the HTTP GET method. Only available if variable tracking has been turned on via either the track_vars configuration directive or the <?php_track_vars?> directive.

HTTP_POST_VARS

 An associative array of variables passed to the current script via the HTTP POST method. Only available if variable tracking has been turned on via either the track_vars configuration directive or the <?php_track_vars?> directive.

Variable scope

 The scope of a variable is the context within which it is defined. For the most part all PHP variables only have a single scope. This single scope spans included and required files as well. For example:

$a = 1;

include "b.inc";

 Here the $a variable will be available within the included b.inc script. However, within user-defined functions a local function scope is introduced. Any variable used inside a function is by default limited to the local function scope. For example:

$a = 1; /* global scope */

Function Test () {

 echo $a; /* reference to local scope variable */

}

Test ();

 This script will not produce any output because the echo statement refers to a local version of the $a variable, and it has not been assigned a value within this scope. You may notice that this is a little bit different from the C language in that global variables in C are automatically available to functions unless specifically overridden by a local definition. This can cause some problems in that people may inadvertently change a global variable. In PHP global variables must be declared global inside a function if they are going to be used in that function. An example:

$a = 1;

$b = 2;

Function Sum () {

 global $a, $b;

 $b = $a + $b;

}

Sum ();

echo $b;

 The above script will output "3". By declaring $a and $b global within the function, all references to either variable will refer to the global version. There is no limit to the number of global variables that can be manipulated by a function.

 A second way to access variables from the global scope is to use the special PHP-defined $GLOBALS array. The previous example can be rewritten as:

$a = 1;

$b = 2;

Function Sum () {

 $GLOBALS["b"] = $GLOBALS["a"] + $GLOBALS["b"];

}

Sum ();

echo $b;

 The $GLOBALS array is an associative array with the name of the global variable being the key and the contents of that variable being the value of the array element.

 Another important feature of variable scoping is the static variable. A static variable exists only in a local function scope, but it does not lose its value when program execution leaves this scope. Consider the following example:

Function Test () {

 $a = 0;

 echo $a;

 $a++;

}

 This function is quite useless since every time it is called it sets $a to 0 and prints "0". The $a++ which increments the variable serves no purpose since as soon as the function exits the $a variable disappears. To make a useful counting function which will not lose track of the current count, the $a variable is declared static:

Function Test () {

 static $a = 0;

 echo $a;

 $a++;

}

 Now, every time the Test() function is called it will print the value of $a and increment it.

 Static variables also provide one way to deal with recursive functions. A recursive function is one which calls itself. Care must be taken when writing a recursive function because it is possible to make it recurse indefinitely. You must make sure you have an adequate way of terminating the recursion. The following simple function recursively counts to 10, using the static variable $count to know when to stop:

Function Test () {

 static $count = 0;

 $count++;

 echo $count;

 if ($count < 10) {

 Test ();

 }

 $count--;

}

Variable variables

 Sometimes it is convenient to be able to have variable variable names. That is, a variable name which can be set and used dynamically. A normal variable is set with a statement such as:

$a = "hello";

 A variable variable takes the value of a variable and treats that as the name of a variable. In the above example, hello, can be used as the name of a variable by using two dollar signs. i.e.

$$a = "world";

 At this point two variables have been defined and stored in the PHP symbol tree: $a with contents "hello" and $hello with contents "world". Therefore, this statement:

echo "$a ${$a}";

 produces the exact same output as:

echo "$a $hello";

 i.e. they both produce: hello world.

 In order to use variable variables with arrays, you have to resolve an ambiguity problem. That is, if you write $$a[1] then the parser needs to know if you meant to use $a[1] as a variable, or if you wanted $$a as the variable and then the [1] index from that variable. The syntax for resolving this ambiguity is: ${$a[1]} for the first case and ${$a}[1] for the second.

Variables from outside PHP

HTML Forms (GET and POST)

 When a form is submitted to a PHP script, any variables from that form will be automatically made available to the script by PHP. For instance, consider the following form:

Example 7-1. Simple form variable

<form action="foo.php3" method="post">

 Name: <input type="text" name="name">

 <input type="submit">

</form>

 When submitted, PHP will create the variable $name, which will will contain whatever what entered into the Name: field on the form.

 PHP also understands arrays in the context of form variables, but only in one dimension. You may, for example, group related variables together, or use this feature to retrieve values from a multiple select input:

Example 7-2. More complex form variables

<form action="array.php" method="post">

 Name: <input type="text" name="personal[name]">

 Email: <input type="text" name="personal[email]">

 Beer:

 <select multiple name="beer[]">

 <option value="warthog">Warthog

 <option value="guinness">Guinness

 <option value="stuttgarter">Stuttgarter Schwabenbräu

 </select>

 <input type="submit">

</form>

 If PHP's track_vars feature is turned on, either by the track_vars configuration setting or the <?php_track_vars?> directive, then variables submitted via the POST or GET methods will also be found in the global associative arrays $HTTP_POST_VARS and $HTTP_GET_VARS as appropriate.

IMAGE SUBMIT variable names

 When submitting a form, it is possible to use an image instead of the standard submit button with a tag like:

<input type=image src="image.gif" name="sub">

 When the user clicks somewhere on the image, the accompanying form will be transmitted to the server with two additional variables, sub_x and sub_y. These contain the coordinates of the user click within the image. The experienced may note that the actual variable names sent by the browser contains a period rather than an underscore, but PHP converts the period to an underscore automatically.

HTTP Cookies

 PHP transparently supports HTTP cookies as defined by Netscape's Spec (http://www.netscape.com/newsref/std/cookie_spec.html). Cookies are a mechanism for storing data in the remote browser and thus tracking or identifying return users. You can set cookies using the SetCookie() function. Cookies are part of the HTTP header, so the SetCookie function must be called before any output is sent to the browser. This is the same restriction as for the Header() function. Any cookies sent to you from the client will automatically be turned into a PHP variable just like GET and POST method data.

 If you wish to assign multiple values to a single cookie, just add [] to the cookie name. For example:

SetCookie ("MyCookie[]", "Testing", time()+3600);

 Note that a cookie will replace a previous cookie by the same name in your browser unless the path or domain is different. So, for a shopping cart application you may want to keep a counter and pass this along. i.e.

Example 7-3. SetCookie Example

$Count++;

SetCookie ("Count", $Count, time()+3600);

SetCookie ("Cart[$Count]", $item, time()+3600);

Environment variables

 PHP automatically makes environment variables available as normal PHP variables.

echo $HOME; /* Shows the HOME environment variable, if set. */

 Since information coming in via GET, POST and Cookie mechanisms also automatically create PHP variables, it is sometimes best to explicitly read a variable from the environment in order to make sure that you are getting the right version. The getenv() function can be used for this. You can also set an environment variable with the putenv() function.

Dots in incoming variable names

 Typically, PHP does not alter the names of variables when they are passed into a script. However, it should be noted that the dot (period, full stop) is not a valid character in a PHP variable name. For the reason, look at it:

$varname.ext; /* invalid variable name */

 Now, what the parser sees is a variable named $varname, followed by the string concatenation operator, followed by the barestring (i.e. unquoted string which doesn't match any known key or reserved words) 'ext'. Obviously, this doesn't have the intended result.

 For this reason, it is important to note that PHP will automatically replace any dots in incoming variable names with underscores.

Determining variable types

 Because PHP determines the types of variables and converts them (generally) as needed, it is not always obvious what type a given variable is at any one time. PHP includes several functions which find out what type a variable is. They are gettype(), is_long(), is_double(), is_string(), is_array(), and is_object().

Chapter 8. Constants

 PHP defines several constants and provides a mechanism for defining more at run-time. Constants are much like variables, save for the two facts that constants must be defined using the define() function, and that they cannot later be redefined to another value.

 The predefined constants (always available) are:

__FILE__

 The name of the script file presently being parsed. If used within a file which has been included or required, then the name of the included file is given, and not the name of the parent file.

__LINE__

 The number of the line within the current script file which is being parsed. If used within a file which has been included or required, then the position within the included file is given.

PHP_VERSION

 The string representation of the version of the PHP parser presently in use; e.g. '3.0.8-dev'.

PHP_OS

 The name of the operating system on which the PHP parser is executing; e.g. 'Linux'.

TRUE

 A true value.

FALSE

 A false value.

E_ERROR

 Denotes an error other than a parsing error from which recovery is not possible.

E_WARNING

 Denotes a condition where PHP knows something is wrong, but will continue anyway; these can be caught by the script itself. An example would be an invalid regexp in ereg().

E_PARSE

 The parser choked on invalid syntax in the script file. Recovery is not possible.

E_NOTICE

 Something happened which may or may not be an error. Execution continues. Examples include using an unquoted string as a hash index, or accessing a variable which has not been set.

E_ALL

 All of the E_* constants rolled into one. If used with error_reporting(), will cause any and all problems noticed by PHP to be reported.

 The E_* constants are typically used with the error_reporting() function for setting the error reporting level. See all these constants at Error handling.

 You can define additional constants using the define() function.

 Note that these are constants, not C-style macros; only valid scalar data may be represented by a constant.

Example 8-1. Defining Constants

<?php

define("CONSTANT", "Hello world.");

echo CONSTANT; // outputs "Hello world."

?>

Example 8-2. Using __FILE__ and __LINE__

<?php

function report_error($file, $line, $message) {

 echo "An error occured in $file on line $line: $message.";

}

report_error(__FILE__,__LINE__, "Something went wrong!");

?>

Chapter 9. Expressions

 Expressions are the most important building stones of PHP. In PHP, almost anything you write is an expression. The simplest yet most accurate way to define an expression is "anything that has a value".

 The most basic forms of expressions are constants and variables. When you type "$a = 5", you're assigning '5' into $a. '5', obviously, has the value 5, or in other words '5' is an expression with the value of 5 (in this case, '5' is an integer constant).

 After this assignment, you'd expect $a's value to be 5 as well, so if you wrote $b = $a, you'd expect it to behave just as if you wrote $b = 5. In other words, $a is an expression with the value of 5 as well. If everything works right, this is exactly what will happen.

 Slightly more complex examples for expressions are functions. For instance, consider the following function:

function foo () {

 return 5;

}

 Assuming you're familiar with the concept of functions (if you're not, take a look at the chapter about functions), you'd assume that typing $c = foo() is essentially just like writing $c = 5, and you're right. Functions are expressions with the value of their return value. Since foo() returns 5, the value of the expression 'foo()' is 5. Usually functions don't just return a static value but compute something.

 Of course, values in PHP don't have to be integers, and very often they aren't. PHP supports three scalar value types: integer values, floating point values and string values (scalar values are values that you can't 'break' into smaller pieces, unlike arrays, for instance). PHP also supports two composite (non-scalar) types: arrays and objects. Each of these value types can be assigned into variables or returned from functions.

 So far, users of PHP/FI 2 shouldn't feel any change. However, PHP takes expressions much further, in the same way many other languages do. PHP is an expression-oriented language, in the sense that almost everything is an expression. Consider the example we've already dealt with, '$a = 5'. It's easy to see that there are two values involved here, the value of the integer constant '5', and the value of $a which is being updated to 5 as well. But the truth is that there's one additional value involved here, and that's the value of the assignment itself. The assignment itself evaluates to the assigned value, in this case 5. In practice, it means that '$a = 5', regardless of what it does, is an expression with the value 5. Thus, writing something like '$b = ($a = 5)' is like writing '$a = 5; $b = 5;' (a semicolon marks the end of a statement). Since assignments are parsed in a right to left order, you can also write '$b = $a = 5'.

 Another good example of expression orientation is pre- and post-increment and decrement. Users of PHP/FI 2 and many other languages may be familiar with the notation of variable++ and variable--. These are increment and decrement operators. In PHP/FI 2, the statement '$a++' has no value (is not an expression), and thus you can't assign it or use it in any way. PHP enhances the increment/decrement capabilities by making these expressions as well, like in C. In PHP, like in C, there are two types of increment - pre-increment and post-increment. Both pre-increment and post-increment essentially increment the variable, and the effect on the variable is idential. The difference is with the value of the increment expression. Pre-increment, which is written '++$variable', evaluates to the incremented value (PHP increments the variable before reading its value, thus the name 'pre-increment'). Post-increment, which is written '$variable++' evaluates to the original value of $variable, before it was incremented (PHP increments the variable after reading its value, thus the name 'post-increment').

 A very common type of expressions are comparison expressions. These expressions evaluate to either 0 or 1, meaning FALSE or TRUE (respectively). PHP supports > (bigger than), >= (bigger than or equal to), == (equal), != (not equal), < (smaller than) and <= (smaller than or equal to). These expressions are most commonly used inside conditional execution, such as if statements.

 The last example of expressions we'll deal with here is combined operator-assignment expressions. You already know that if you want to increment $a by 1, you can simply write '$a++' or '++$a'. But what if you want to add more than one to it, for instance 3? You could write '$a++' multiple times, but this is obviously not a very efficient or comfortable way. A much more common practice is to write '$a = $a + 3'. '$a + 3' evaluates to the value of $a plus 3, and is assigned back into $a, which results in incrementing $a by 3. In PHP, as in several other languages like C, you can write this in a shorter way, which with time would become clearer and quicker to understand as well. Adding 3 to the current value of $a can be written '$a += 3'. This means exactly "take the value of $a, add 3 to it, and assign it back into $a". In addition to being shorter and clearer, this also results in faster execution. The value of '$a += 3', like the value of a regular assignment, is the assigned value. Notice that it is NOT 3, but the combined value of $a plus 3 (this is the value that's assigned into $a). Any two-place operator can be used in this operator-assignment mode, for example '$a -= 5' (subtract 5 from the value of $a), '$b *= 7' (multiply the value of $b by 7), etc.

 There is one more expression that may seem odd if you haven't seen it in other languages, the ternary conditional operator:

$first ? $second : $third

 If the value of the first subexpression is true (non-zero), then it the second subexpression is evaluated, and that is the result of the conditional expression. Otherwise, the third subexpression is evaluated, and that is the value.

 The following example should help you understand pre- and post-increment and expressions in general a bit better:

function double($i) {

 return $i*2;

}

$b = $a = 5; /* assign the value five into the variable $a and $b */

$c = $a++; /* post-increment, assign original value of $a

 (5) to $c */

$e = $d = ++$b; /* pre-increment, assign the incremented value of

 $b (6) to $d and $e */

/* at this point, both $d and $e are equal to 6 */

$f = double($d++); /* assign twice the value of $d before

 the increment, 2*6 = 12 to $f */

$g = double(++$e); /* assign twice the value of $e after
 the increment, 2*7 = 14 to $g */

$h = $g += 10; /* first, $g is incremented by 10 and ends with the

 value of 24. the value of the assignment (24) is

 then assigned into $h, and $h ends with the value

 of 24 as well. */

 In the beginning of the chapter we said that we'll be describing the various statement types, and as promised, expressions can be statements. However, not every expression is a statement. In this case, a statement has the form of 'expr' ';' that is, an expression followed by a semicolon. In '$b=$a=5;', $a=5 is a valid expression, but it's not a statement by itself. '$b=$a=5;' however is a valid statement.

 One last thing worth mentioning is the truth value of expressions. In many events, mainly in conditional execution and loops, you're not interested in the specific value of the expression, but only care about whether it means TRUE or FALSE (PHP doesn't have a dedicated boolean type). The truth value of expressions in PHP is calculated in a similar way to perl. Any numeric non-zero numeric value is TRUE, zero is FALSE. Be sure to note that negative values are non-zero and are thus considered TRUE! The empty string and the string "0" are FALSE; all other strings are TRUE. With non-scalar values (arrays and objects) - if the value contains no elements it's considered FALSE, otherwise it's considered TRUE.

 PHP provides a full and powerful implementation of expressions, and documenting it entirely goes beyond the scope of this manual. The above examples should give you a good idea about what expressions are and how you can construct useful expressions. Throughout the rest of this manual we'll write expr to indicate any valid PHP expression.

Chapter 10. Operators

Arithmetic Operators

 Remember basic arithmetic from school? These work just like those.

Table 10-1. Arithmetic Operators

	example
	name
	result

	$a + $b
	Addition
	Sum of $a and $b.

	$a - $b
	Subtraction
	Difference of $a and $b.

	$a * $b
	Multiplication
	Product of $a and $b.

	$a / $b
	Division
	Quotient of $a and $b.

	$a % $b
	Modulus
	Remainder of $a divided by $b.

Assignment Operators

 The basic assignment operator is "=". Your first inclination might be to think of this as "equal to". Don't. It really means that the the left operand gets set to the value of the expression on the rights (that is, "gets set to").

 The value of an assignment expression is the value assigned. That is, the value of "$a = 3" is 3. This allows you to do some tricky things:

$a = ($b = 4) + 5; // $a is equal to 9 now, and $b has been set to 4.

 In addition to the basic assignment operator, there are "combined operators" for all of the binary arithmetic and string operators that allow you to use a value in an expression and then set its value to the result of that expression. For example:

$a = 3;

$a += 5; // sets $a to 8, as if we had said: $a = $a + 5;

$b = "Hello ";

$b .= "There!"; // sets $b to "Hello There!", just like $b = $b . "There!";

 Note that the assignment copies the original variable to the new one (assignment by value), so changes to one will not affect the other. This may also have relevance if you need to copy something like a large array inside a tight loop. PHP4 supports assignment by reference, using the $var = &$othervar; syntax, but this is not possible in PHP3. 'Assignment by reference' means that both variables end up pointing at the same data, and nothing is copied anywhere.

Bitwise Operators

 Bitwise operators allow you to turn specific bits within an integer on or off.

Table 10-2. Bitwise Operators

	example
	name
	result

	$a & $b
	And
	Bits that are set in both $a and $b are set.

	$a | $b
	Or
	Bits that are set in either $a or $b are set.

	$a ^ $b
	Xor
	Bits that are set in $a or $b but not both are set.

	~ $a
	Not
	Bits that are set in $a are not set, and vice versa.

	$a << $b
	Shift left
	Shift the bits of $a $b steps to the left (each step means "multiply by two")

	$a >> $b
	Shift right
	Shift the bits of $a $b steps to the right (each step means "divide by two")

Comparison Operators

 Comparison operators, as their name implies, allow you to compare two values.

Table 10-3. Comparison Operators

	example
	name
	result

	$a == $b
	Equal
	True if $a is equal to $b.

	$a === $b
	Identical
	True if $a is equal to $b, and they are of the same type. (PHP4 only)

	$a != $b
	Not equal
	True if $a is not equal to $b.

	$a !== $b
	Not identical
	True if $a is not equal to $b, or they are not of the same type. (PHP4 only)

	$a < $b
	Less than
	True if $a is strictly less than $b.

	$a > $b
	Greater than
	True if $a is strictly greater than $b.

	$a <= $b
	Less than or equal to
	True if $a is less than or equal to $b.

	$a >= $b
	Greater than or equal to
	True if $a is greater than or equal to $b.

 Another conditional operator is the "?:" (or trinary) operator, which operates as in C and many other languages.

(expr1) ? (expr2) : (expr3);

 This expression evaluates to expr2 if expr1 evaluates to true, and expr3 if expr1 evaluates to false.

Error control Operators

 PHP supports one error control operator: the at sign (@). When prepended to an expression in PHP, any error messages that might be generated by that expression will be ignored.

 If the track_errors feature is enabled, any error message generated by the expression will be saved in the global variable $php_errormsg. This variable will be overwritten on each error, so check early if you want to use it.

<?php

/* Intentional SQL error (extra quote): */

$res = @mysql_query("select name, code from 'namelist") or

 die("Query failed: error was '$php_errormsg'");

?>

 See also error_reporting().

Execution Operators

 PHP supports one execution operator: backticks (``). Note that these are not single-quotes! PHP will attempt to execute the contents of the backticks as a shell command; the output will be returned (i.e., it won't simply be dumped to output; it can be assigned to a variable).

$output = `ls -al`;

echo "<pre>$output</pre>";

 See also system(), passthru(), exec(), popen(), and escapeshellcmd().

Incrementing/Decrementing Operators

 PHP supports C-style pre- and post-increment and decrement operators.

Table 10-4. Increment/decrement Operators

	example
	name
	effect

	++$a
	Pre-increment
	Increments $a by one, then returns $a.

	$a++
	Post-increment
	Returns $a, then increments $a by one.

	--$a
	Pre-decrement
	Decrements $a by one, then returns $a.

	$a--
	Post-decrement
	Returns $a, then decrements $a by one.

 Here's a simple example script:

<?php

echo "<h3>Postincrement</h3>";

$a = 5;

echo "Should be 5: " . $a++ . "
\n";

echo "Should be 6: " . $a . "
\n";

echo "<h3>Preincrement</h3>";

$a = 5;

echo "Should be 6: " . ++$a . "
\n";

echo "Should be 6: " . $a . "
\n";

echo "<h3>Postdecrement</h3>";

$a = 5;

echo "Should be 5: " . $a-- . "
\n";

echo "Should be 4: " . $a . "
\n";

echo "<h3>Predecrement</h3>";

$a = 5;

echo "Should be 4: " . --$a . "
\n";

echo "Should be 4: " . $a . "
\n";

?>

Logical Operators

Table 10-5. Logical Operators

	example
	name
	result

	$a and $b
	And
	True if both $a and $b are true.

	$a or $b
	Or
	True if either $a or $b is true.

	$a xor $b
	Or
	True if either $a or $b is true, but not both.

	! $a
	Not
	True if $a is not true.

	$a && $b
	And
	True if both $a and $b are true.

	$a || $b
	Or
	True if either $a or $b is true.

 The reason for the two different variations of "and" and "or" operators is that they operate at different precedences. (See Operator Precedence.)

Operator Precedence

 The precedence of an operator specifies how "tightly" it binds two expressions together. For example, in the expression 1 + 5 * 3, the answer is 16 and not 18 because the multiplication ("*") operator has a higher precedence than the addition ("+") operator.

 The following table lists the precedence of operators with the lowest-precedence operators listed first.

Table 10-6. Operator Precedence

	Associativity
	Operators

	left
	,

	left
	or

	left
	xor

	left
	and

	right
	print

	left
	= += -= *= /= .= %= &= |= ^= ~= <<= >>=

	left
	? :

	left
	||

	left
	&&

	left
	|

	left
	^

	left
	&

	non-associative
	== != === !==

	non-associative
	< <= > >=

	left
	<< >>

	left
	+ - .

	left
	* / %

	right
	! ~ ++ -- (int) (double) (string) (array) (object) @

	right
	[

	non-associative
	new

String Operators

 There are two string operators. The first is the concatenation operator ('.'), which returns the concatenation of its right and left arguments. The second is the concatenating assignment operator ('.='). Please read Assignment Operators for more information.

$a = "Hello ";

$b = $a . "World!"; // now $b contains "Hello World!"

$a = "Hello ";

$a .= "World!"; // now $a contains "Hello World!"

Chapter 11. Control Structures

 Any PHP script is built out of a series of statements. A statement can be an assignment, a function call, a loop, a conditional statement of even a statement that does nothing (an empty statement). Statements usually end with a semicolon. In addition, statements can be grouped into a statement-group by encapsulating a group of statements with curly braces. A statement-group is a statement by itself as well. The various statement types are described in this chapter.

if

 The if construct is one of the most important features of many languages, PHP included. It allows for conditional execution of code fragments. PHP features an if structure that is similar to that of C:

if (expr)

 statement

 As described in the section about expressions, expr is evaluated to its truth value. If expr evaluates to TRUE, PHP will execute statement, and if it evaluates to FALSE - it'll ignore it.

 The following example would display a is bigger than b if $a is bigger than $b:

if ($a > $b)

 print "a is bigger than b";

 Often you'd want to have more than one statement to be executed conditionally. Of course, there's no need to wrap each statement with an if clause. Instead, you can group several statements into a statement group. For example, this code would display a is bigger than b if $a is bigger than $b, and would then assign the value of $a into $b:

if ($a > $b) {

 print "a is bigger than b";

 $b = $a;

}

 If statements can be nested indefinitely within other if statements, which provides you with complete flexibility for conditional execution of the various parts of your program.

else

 Often you'd want to execute a statement if a certain condition is met, and a different statement if the condition is not met. This is what else is for. else extends an if statement to execute a statement in case the expression in the if statement evaluates to FALSE. For example, the following code would display a is bigger than b if $a is bigger than $b, and a is NOT bigger than b otherwise:

if ($a > $b) {

 print "a is bigger than b";

} else {

 print "a is NOT bigger than b";

}

 The else statement is only executed if the if expression evaluated to FALSE, and if there were any elseif expressions - only if they evaluated to FALSE as well (see elseif).

elseif

 elseif, as its name suggests, is a combination of if and else. Like else, it extends an if statement to execute a different statement in case the original if expression evaluates to FALSE. However, unlike else, it will execute that alternative expression only if the elseif conditional expression evaluates to TRUE. For example, the following code would display a is bigger than b, a equal to b or a is smaller than b:

if ($a > $b) {

 print "a is bigger than b";

} elseif ($a == $b) {

 print "a is equal to b";

} else {

 print "a is smaller than b";

}

 There may be several elseifs within the same if statement. The first elseif expression (if any) that evaluates to true would be executed. In PHP, you can also write 'else if' (in two words) and the behavior would be identical to the one of 'elseif' (in a single word). The syntactic meaning is slightly different (if you're familiar with C, this is the same behavior) but the bottom line is that both would result in exactly the same behavior.

 The elseif statement is only executed if the preceding if expression and any preceding elseif expressions evaluated to FALSE, and the current elseif expression evaluated to TRUE.

Alternative syntax for control structures

 PHP offers an alternative syntax for some of its control structures; namely, if, while, for, and switch. In each case, the basic form of the alternate syntax is to change the opening brace to a colon (:) and the closing brace to endif;, endwhile;, endfor;, or endswitch;, respectively.

 <?php if ($a == 5): ?>

 A is equal to 5

 <?php endif; ?>

 In the above example, the HTML block "A = 5" is nested within an if statement written in the alternative syntax. The HTML block would be displayed only if $a is equal to 5.

 The alternative syntax applies to else and elseif as well. The following is an if structure with elseif and else in the alternative format:

if ($a == 5):

 print "a equals 5";

 print "...";

elseif ($a == 6):

 print "a equals 6";

 print "!!!";

else:

 print "a is neither 5 nor 6";

endif;

 See also while, for, and if for further examples.

while

 while loops are the simplest type of loop in PHP. They behave just like their C counterparts. The basic form of a while statement is:

while (expr) statement

 The meaning of a while statement is simple. It tells PHP to execute the nested statement(s) repeatedly, as long as the while expression evaluates to TRUE. The value of the expression is checked each time at the beginning of the loop, so even if this value changes during the execution of the nested statement(s), execution will not stop until the end of the iteration (each time PHP runs the statements in the loop is one iteration). Sometimes, if the while expression evaluates to FALSE from the very beginning, the nested statement(s) won't even be run once.

 Like with the if statement, you can group multiple statements within the same while loop by surrounding a group of statements with curly braces, or by using the alternate syntax:

while (expr): statement ... endwhile;

 The following examples are identical, and both print numbers from 1 to 10:

/* example 1 */

$i = 1;

while ($i <= 10) {

 print $i++; /* the printed value would be

 $i before the increment

 (post-increment) */

}

/* example 2 */

$i = 1;

while ($i <= 10):

 print $i;

 $i++;

endwhile;

do..while

 do..while loops are very similar to while loops, except the truth expression is checked at the end of each iteration instead of in the beginning. The main difference from regular while loops is that the first iteration of a do..while loop is guarenteed to run (the truth expression is only checked at the end of the iteration), whereas it's may not necessarily run with a regular while loop (the truth expression is checked at the beginning of each iteration, if it evaluates to FALSE right from the beginning, the loop execution would end immediately).

 There is just one syntax for do..while loops:

$i = 0;

do {

 print $i;

} while ($i>0);

 The above loop would run one time exactly, since after the first iteration, when truth expression is checked, it evaluates to FALSE ($i is not bigger than 0) and the loop execution ends.

 Advanced C users may be familiar with a different usage of the do..while loop, to allow stopping execution in the middle of code blocks, by encapsulating them with do..while(0), and using the break statement. The following code fragment demonstrates this:

do {

 if ($i < 5) {

 print "i is not big enough";

 break;

 }

 $i *= $factor;

 if ($i < $minimum_limit) {

 break;

 }

 print "i is ok";

 ...process i...

} while(0);

 Don't worry if you don't understand this right away or at all. You can code scripts and even powerful scripts without using this `feature'.

for

 for loops are the most complex loops in PHP. They behave like their C counterparts. The syntax of a for loop is:

for (expr1; expr2; expr3) statement

 The first expression (expr1) is evaluated (executed) once unconditionally at the beginning of the loop.

 In the beginning of each iteration, expr2 is evaluated. If it evaluates to TRUE, the loop continues and the nested statement(s) are executed. If it evaluates to FALSE, the execution of the loop ends.

 At the end of each iteration, expr3 is evaluated (executed).

 Each of the expressions can be empty. expr2 being empty means the loop should be run indefinitely (PHP implicitly considers it as TRUE, like C). This may not be as useless as you might think, since often you'd want to end the loop using a conditional break statement instead of using the for truth expression.

 Consider the following examples. All of them display numbers from 1 to 10:

/* example 1 */

for ($i = 1; $i <= 10; $i++) {

 print $i;

}

/* example 2 */

for ($i = 1;;$i++) {

 if ($i > 10) {

 break;

 }

 print $i;

}

/* example 3 */

$i = 1;

for (;;) {

 if ($i > 10) {

 break;

 }

 print $i;

 $i++;

}

/* example 4 */

for ($i = 1; $i <= 10; print $i, $i++) ;

 Of course, the first example appears to be the nicest one (or perhaps the fourth), but you may find that being able to use empty expressions in for loops comes in handy in many occasions.

 PHP also supports the alternate "colon syntax" for for loops.

for (expr1; expr2; expr3): statement; ...; endfor;

 Other languages have a foreach statement to traverse an array or hash. PHP3 has no such construct; PHP4 does (see foreach). In PHP3, you can combine while with the list() and each() functions to achieve the same effect. See the documentation for these functions for an example.

foreach

 PHP4 (not PHP3) includes a foreach construct, much like perl and some other languages. This simply gives an easy way to iterate over arrays. There are two syntaxes; the second is a minor but useful extension of the first:

foreach(array_expression as $value) statement

foreach(array_expression as $key => $value) statement

 The first form loops over the array given by array_expression. On each loop, the value of the current element is assigned to $value and the internal array pointer is advanced by one (so on the next loop, you'll be looking at the next element).

 The second form does the same thing, except that the current element's key will be assigned to the variable $key on each loop.

Note: When foreach first starts executing, the internal array pointer is automatically reset to the first element of the array. This means that you do not need to call reset() before a foreach loop.

Note: Also note that foreach operates on a copy of the specified array, not the array itself, therefore the array pointer is not modified like with the each construct.

 You may have noticed that the following are functionally identical:

reset ($arr);

while (list(, $value) = each ($arr)) {

 echo "Value: $value
\n";

}

foreach ($arr as $value) {

 echo "Value: $value
\n";

}

 The following are also functionally identical:

reset ($arr);

while (list($key, $value) = each ($arr)) {

 echo "Key: $key; Value: $value
\n";

}

foreach ($arr as $key => $value) {

 echo "Key: $key; Value: $value
\n";

}

 Some more examples to demonstrate usages:

/* foreach example 1: value only */

$a = array (1, 2, 3, 17);

foreach ($a as $v) {

 print "Current value of \$a: $v.\n";

}

/* foreach example 2: value (with key printed for illustration) */

$a = array (1, 2, 3, 17);

$i = 0; /* for illustrative purposes only */

foreach($a as $v) {

 print "\$a[$i] => $k.\n";

}

/* foreach example 3: key and value */

$a = array (

 "one" => 1,

 "two" => 2,

 "three" => 3,

 "seventeen" => 17

);

foreach($a as $k => $v) {

 print "\$a[$k] => $v.\n";

}

break

 break ends execution of the current for, while, or switch structure.

 break accepts an optional numeric argument which tells it how many nested enclosing structures are to be broken out of.

$arr = array ('one', 'two', 'three', 'four', 'stop', 'five');

while (list (, $val) = each ($arr)) {

 if ($val == 'stop') {

 break; /* You could also write 'break 1;' here. */

 }

 echo "$val
\n";

}

/* Using the optional argument. */

$i = 0;

while (++$i) {

 switch ($i) {

 case 5:

 echo "At 5
\n";

 break 1; /* Exit only the switch. */

 case 10:

 echo "At 10; quitting
\n";

 break 2; /* Exit the switch and the while. */

 default:

 break;

 }

}

continue

 continue is used within looping structures to skip the rest of the current loop iteration and continue execution at the beginning of the next iteration.

 continue accepts an optional numeric argument which tells it how many levels of enclosing loops it should skip to the end of.

while (list ($key, $value) = each ($arr)) {

 if (!($key % 2)) { // skip odd members

 continue;

 }

 do_something_odd ($value);

}

$i = 0;

while ($i++ < 5) {

 echo "Outer
\n";

 while (1) {

 echo " Middle
\n";

 while (1) {

 echo " Inner
\n";

 continue 3;

 }

 echo "This never gets output.
\n";

 }

 echo "Neither does this.
\n";

}

switch

 The switch statement is similar to a series of IF statements on the same expression. In many occasions, you may want to compare the same variable (or expression) with many different values, and execute a different piece of code depending on which value it equals to. This is exactly what the switch statement is for.

 The following two examples are two different ways to write the same thing, one using a series of if statements, and the other using the switch statement:

if ($i == 0) {

 print "i equals 0";

}

if ($i == 1) {

 print "i equals 1";

}

if ($i == 2) {

 print "i equals 2";

}

switch ($i) {

 case 0:

 print "i equals 0";

 break;

 case 1:

 print "i equals 1";

 break;

 case 2:

 print "i equals 2";

 break;

}

 It is important to understand how the switch statement is executed in order to avoid mistakes. The switch statement executes line by line (actually, statement by statement). In the beginning, no code is executed. Only when a case statement is found with a value that matches the value of the switch expression does PHP begin to execute the statements. PHP continues to execute the statements until the end of the switch block, or the first time it sees a break statement. If you don't write a break statement at the end of a case's statement list, PHP will go on executing the statements of the following case. For example:

switch ($i) {

 case 0:

 print "i equals 0";

 case 1:

 print "i equals 1";

 case 2:

 print "i equals 2";

}

 Here, if $i equals to 0, PHP would execute all of the print statements! If $i equals to 1, PHP would execute the last two print statements, and only if $i equals to 2, you'd get the 'expected' behavior and only 'i equals 2' would be displayed. So, it's important not to forget break statements (even though you may want to avoid supplying them on purpose under certain circumstances).

 In a switch statement, the condition is evaluated only once and the result is compared to each case statement. In an elseif statement, the condition is evaluated again. If your condition is more complicated than a simple compare and/or is in a tight loop, a switch may be faster.

 The statement list for a case can also be empty, which simply passes control into the statement list for the next case.

switch ($i) {

 case 0:

 case 1:

 case 2:

 print "i is less than 3 but not negative";

 break;

 case 3:

 print "i is 3";

}

 A special case is the default case. This case matches anything that wasn't matched by the other cases. For example:

switch ($i) {

 case 0:

 print "i equals 0";

 break;

 case 1:

 print "i equals 1";

 break;

 case 2:

 print "i equals 2";

 break;

 default:

 print "i is not equal to 0, 1 or 2";

}

 The case expression may be any expression that evaluates to a simple type, that is, integer or floating-point numbers and strings. Arrays or objects cannot be used here unless they are dereferenced to a simple type.

 The alternative syntax for control structures is supported with switches. For more information, see Alternative syntax for control structures .

switch ($i):

 case 0:

 print "i equals 0";

 break;

 case 1:

 print "i equals 1";

 break;

 case 2:

 print "i equals 2";

 break;

 default:

 print "i is not equal to 0, 1 or 2";

endswitch;

require()

 The require() statement replaces itself with the specified file, much like the C preprocessor's #include works.

 If "URL fopen wrappers" are enabled in PHP (which they are in the default configuration), you can specify the file to be require()ed using an URL instead of a local pathname. See Remote files and fopen() for more information.

 An important note about how this works is that when a file is include()ed or require()ed, parsing drops out of PHP mode and into HTML mode at the beginning of the target file, and resumes PHP mode again at the end. For this reason, any code inside the target file which should be executed as PHP code must be enclosed within valid PHP start and end tags.

 require() is not actually a function in PHP; rather, it is a language construct. It is subject to some different rules than functions are. For instance, require() is not subject to any containing control structures. For another, it does not return any value; attempting to read a return value from a require() call results in a parse error.

 Unlike include(), require() will always read in the target file, even if the line it's on never executes. If you want to conditionally include a file, use include(). The conditional statement won't affect the require(). However, if the line on which the require() occurs is not executed, neither will any of the code in the target file be executed.

 Similarly, looping structures do not affect the behaviour of require(). Although the code contained in the target file is still subject to the loop, the require() itself happens only once.

 This means that you can't put a require() statement inside of a loop structure and expect it to include the contents of a different file on each iteration. To do that, use an include() statement.

require ('header.inc');

 When a file is require()ed, the code it contains inherits the variable scope of the line on which the require() occurs. Any variables available at that line in the calling file will be available within the called file. If the require() occurs inside a function within the calling file, then all of the code contained in the called file will behave as though it had been defined inside that function.

 If the require()ed file is called via HTTP using the fopen wrappers, and if the target server interprets the target file as PHP code, variables may be passed to the require()ed file using an URL request string as used with HTTP GET. This is not strictly speaking the same thing as require()ing the file and having it inherit the parent file's variable scope; the script is actually being run on the remote server and the result is then being included into the local script.

/* This example assumes that someserver is configured to parse .php

 * files and not .txt files. Also, 'works' here means that the variables

 * $varone and $vartwo are available within the require()ed file. */

/* Won't work; file.txt wasn't handled by someserver. */

require ("http://someserver/file.txt?varone=1&vartwo=2");

/* Won't work; looks for a file named 'file.php?varone=1&vartwo=2'

 * on the local filesystem. */

require ("file.php?varone=1&vartwo=2");

/* Works. */

require ("http://someserver/file.php?varone=1&vartwo=2");

$varone = 1;

$vartwo = 2;

require ("file.txt"); /* Works. */

require ("file.php"); /* Works. */

 In PHP3, it is possible to execute a return statement inside a require()ed file, as long as that statement occurs in the global scope of the require()ed file. It may not occur within any block (meaning inside braces ({}). In PHP4, however, this ability has been discontinued. If you need this functionality, see include().

 See also include(), require_once(), include_once(), readfile(), and virtual().

include()

 The include() statement includes and evaluates the specified file.

 If "URL fopen wrappers" are enabled in PHP (which they are in the default configuration), you can specify the file to be include()ed using an URL instead of a local pathname. See Remote files and fopen() for more information.

 An important note about how this works is that when a file is include()ed or require()ed, parsing drops out of PHP mode and into HTML mode at the beginning of the target file, and resumes again at the end. For this reason, any code inside the target file which should be executed as PHP code must be enclosed within valid PHP start and end tags.

 This happens each time the include() statement is encountered, so you can use an include() statement within a looping structure to include a number of different files.

$files = array ('first.inc', 'second.inc', 'third.inc');

for ($i = 0; $i < count($files); $i++) {

 include $files[$i];

}

 include() differs from require() in that the include statement is re-evaluated each time it is encountered (and only when it is being executed), whereas the require() statement is replaced by the required file when it is first encountered, whether the contents of the file will be evaluated or not (for example, if it is inside an if statement whose condition evaluated to false).

 Because include() is a special language construct, you must enclose it within a statement block if it is inside a conditional block.

/* This is WRONG and will not work as desired. */

if ($condition)

 include($file);

else

 include($other);

/* This is CORRECT. */

if ($condition) {

 include($file);

} else {

 include($other);

}

 In both PHP3 and PHP4, it is possible to execute a return statement inside an include()ed file, in order to terminate processing in that file and return to the script which called it. Some differences in the way this works exist, however. The first is that in PHP3, the return may not appear inside a block unless it's a function block, in which case the return applies to that function and not the whole file. In PHP4, however, this restriction does not exist. Also, PHP4 allows you to return values from include()ed files. You can take the value of the include() call as you would a normal function. This generates a parse error in PHP3.

Example 11-1. include() in PHP3 and PHP4

 Assume the existence of the following file (named test.inc) in the same directory as the main file:

<?php

echo "Before the return
\n";

if (1) {

 return 27;

}

echo "After the return
\n";

?>

 Assume that the main file (main.html) contains the following:

<?php

$retval = include ('test.inc');

echo "File returned: '$retval'
\n";

?>

 When main.html is called in PHP3, it will generate a parse error on line 2; you can't take the value of an include() in PHP3. In PHP4, however, the result will be:

Before the return

File returned: '27'

 Now, assume that main.html has been altered to contain the following:

<?php

include ('test.inc');

echo "Back in main.html
\n";

?>

 In PHP4, the output will be:

Before the return

Back in main.html

 However, PHP3 will give the following output:

Before the return

27Back in main.html

Parse error: parse error in /home/torben/public_html/phptest/main.html on line 5

 The above parse error is a result of the fact that the return statement is enclosed in a non-function block within test.inc. When the return is moved outside of the block, the output is:

Before the return

27Back in main.html

 The spurious '27' is due to the fact that PHP3 does not support returning values from files like that.

 When a file is include()ed, the code it contains inherits the variable scope of the line on which the include() occurs. Any variables available at that line in the calling file will be available within the called file. If the include() occurs inside a function within the calling file, then all of the code contained in the called file will behave as though it had been defined inside that function.

 If the include()ed file is called via HTTP using the fopen wrappers, and if the target server interprets the target file as PHP code, variables may be passed to the include()ed file using an URL request string as used with HTTP GET. This is not strictly speaking the same thing as include()ing the file and having it inherit the parent file's variable scope; the script is actually being run on the remote server and the result is then being included into the local script.

/* This example assumes that someserver is configured to parse .php

 * files and not .txt files. Also, 'works' here means that the variables

 * $varone and $vartwo are available within the include()ed file. */

/* Won't work; file.txt wasn't handled by someserver. */

include ("http://someserver/file.txt?varone=1&vartwo=2");

/* Won't work; looks for a file named 'file.php?varone=1&vartwo=2'

 * on the local filesystem. */

include ("file.php?varone=1&vartwo=2");

/* Works. */

include ("http://someserver/file.php?varone=1&vartwo=2");

$varone = 1;

$vartwo = 2;

include ("file.txt"); /* Works. */

include ("file.php"); /* Works. */

 See also require(), require_once(), include_once(), readfile(), and virtual().

require_once()

 The require_once() statement replaces itself with the specified file, much like the C preprocessor's #include works, and in that respect is similar to the require() statement. The main difference is that in an inclusion chain, the use of require_once() will assure that the code is added to your script only once, and avoid clashes with variable values or function names that can happen.

 For example, if you create the following 2 include files utils.inc and foolib.inc

Example 11-2. utils.inc

<?php

define(PHPVERSION, floor(phpversion()));

echo "GLOBALS ARE NICE\n";

function goodTea() {

 return "Oolong tea tastes good!";

}

?>

Example 11-3. foolib.inc

<?php

require ("utils.inc");

function showVar($var) {

 if (PHPVERSION == 4) {

 print_r($var);

 } else {

 dump_var($var);

 }

}

// bunch of other functions ...

?>

 And then you write a script cause_error_require.php

Example 11-4. cause_error_require.php

<?php

require("foolib.inc");

/* the following will generate an error */

require("utils.inc");

$foo = array("1",array("complex","quaternion"));

echo "this is requiring utils.inc again which is also\n";

echo "required in foolib.inc\n";

echo "Running goodTea: ".goodTea()."\n";

echo "Printing foo: \n";

showVar($foo);

?>

 When you try running the latter one, the resulting ouptut will be (using PHP 4.01pl2):

GLOBALS ARE NICE

GLOBALS ARE NICE

Fatal error: Cannot redeclare causeerror() in utils.inc on line 5

 By modifying foolib.inc and cause_errror_require.php to use require_once() instead of require() and renaming the last one to avoid_error_require_once.php, we have:

Example 11-5. foolib.inc (fixed)

...

require_once("utils.inc");

function showVar($var) {

...

Example 11-6. avoid_error_require_once.php

...

require_once("foolib.inc");

require_once("utils.inc");

$foo = array("1",array("complex","quaternion"));

...

 And when running the latter, the output will be (using PHP 4.0.1pl2):

GLOBALS ARE NICE

this is requiring globals.inc again which is also

required in foolib.inc

Running goodTea: Oolong tea tastes good!

Printing foo:

Array

(

 [0] => 1

 [1] => Array

 (

 [0] => complex

 [1] => quaternion

)

)

 Also note that, analogous to the behavior of the #include of the C preprocessor, this statement acts at "compile time", e.g. when the script is parsed and before it is executed, and should not be used for parts of the script that need to be inserted dynamically during its execution. You should use include_once() or include() for that purpose.

 For more examples on using require_once() and include_once(), look at the PEAR code included in the latest PHP source code distributions.

 See also: require(), include(), include_once(), get_required_files(), get_included_files(), readfile(), and virtual().

include_once()

 The include_once() statement includes and evaluates the specified file during the execution of the script. This is a behavior similar to the include() statement, with the important difference that if the code from a file has already been included, it will not be included again.

 As mentioned in the require_once() description, the include_once() should be used in the cases in which the same file might be included and evaluated more than once during a particular execution of a script, and you want to be sure that it is included exactly once to avoid problems with function redefinitions, variable value reassignments, etc.

 For more examples on using require_once() and include_once(), look at the PEAR code included in the latest PHP source code distributions.

 See also: require(), include(), require_once(), get_required_files(), get_included_files(), readfile(), and virtual().

Chapter 12. Functions

User-defined functions

 A function may be defined using syntax such as the following:

function foo ($arg_1, $arg_2, ..., $arg_n) {

 echo "Example function.\n";

 return $retval;

}

 Any valid PHP code may appear inside a function, even other functions and class definitions.

 In PHP3, functions must be defined before they are referenced. No such requirement exists in PHP4.

 PHP does not support function overloading, nor is it possible to undefine or redefine previously-declared functions.

 PHP3 does not support variable numbers of arguments to functions, although default arguments are supported (see Default argument values for more information). PHP4 supports both: see Variable-length argument lists and the function references for func_num_args(), func_get_arg(), and func_get_args() for more information.

Function arguments

 Information may be passed to functions via the argument list, which is a comma-delimited list of variables and/or constants.

 PHP supports passing arguments by value (the default), passing by reference, and default argument values. Variable-length argument lists are supported only in PHP4 and later; see Variable-length argument lists and the function references for func_num_args(), func_get_arg(), and func_get_args() for more information. A similar effect can be achieved in PHP3 by passing an array of arguments to a function:

function takes_array($input) {

 echo "$input[0] + $input[1] = ", $input[0]+$input[1];

}

Making arguments be passed by reference

 By default, function arguments are passed by value (so that if you change the value of the argument within the function, it does not get changed outside of the function). If you wish to allow a function to modify its arguments, you must pass them by reference.

 If you want an argument to a function to always be passed by reference, you can prepend an ampersand (&) to the argument name in the function definition:

function add_some_extra(&$string) {

 $string .= 'and something extra.';

}

$str = 'This is a string, ';

add_some_extra($str);

echo $str; // outputs 'This is a string, and something extra.'

 If you wish to pass a variable by reference to a function which does not do this by default, you may prepend an ampersand to the argument name in the function call:

function foo ($bar) {

 $bar .= ' and something extra.';

}

$str = 'This is a string, ';

foo ($str);

echo $str; // outputs 'This is a string, '

foo (&$str);

echo $str; // outputs 'This is a string, and something extra.'

Default argument values

 A function may define C++-style default values for scalar arguments as follows:

function makecoffee ($type = "cappucino") {

 return "Making a cup of $type.\n";

}

echo makecoffee ();

echo makecoffee ("espresso");

 The output from the above snippet is:

Making a cup of cappucino.

Making a cup of espresso.

 The default value must be a constant expression, not (for example) a variable or class member.

 Note that when using default arguments, any defaults should be on the right side of any non-default arguments; otherwise, things will not work as expected. Consider the following code snippet:

function makeyogurt ($type = "acidophilus", $flavour) {

 return "Making a bowl of $type $flavour.\n";

}

echo makeyogurt ("raspberry"); // won't work as expected

 The output of the above example is:

Warning: Missing argument 2 in call to makeyogurt() in

/usr/local/etc/httpd/htdocs/php3test/functest.html on line 41

Making a bowl of raspberry .

 Now, compare the above with this:

function makeyogurt ($flavour, $type = "acidophilus") {

 return "Making a bowl of $type $flavour.\n";

}

echo makeyogurt ("raspberry"); // works as expected

 The output of this example is:

Making a bowl of acidophilus raspberry.

Variable-length argument lists

 PHP4 has support for variable-length argument lists in user-defined functions. This is really quite easy, using the func_num_args(), func_get_arg(), and func_get_args() functions.

 No special syntax is required, and argument lists may still be explicitly provided with function definitions and will behave as normal.

Returning values

 Values are returned by using the optional return statement. Any type may be returned, including lists and objects.

function square ($num) {

 return $num * $num;

}

echo square (4); // outputs '16'.

 You can't return multiple values from a function, but similar results can be obtained by returning a list.

function small_numbers() {

 return array (0, 1, 2);

}

list ($zero, $one, $two) = small_numbers();

 To return a reference from a function, you have to use the reference operator & in both the function declaration and when assigning the return value to a variable:

function &returns_reference() {

 return &$someref;

}

$newref = &returns_reference();

old_function

 The old_function statement allows you to declare a function using a syntax identical to PHP/FI2 (except you must replace 'function' with 'old_function'.

 This is a deprecated feature, and should only be used by the PHP/FI2->PHP3 convertor.

Warning

 Functions declared as old_function cannot be called from PHP's internal code. Among other things, this means you can't use them in functions such as usort(), array_walk(), and register_shutdown_function(). You can get around this limitation by writing a wrapper function (in normal PHP3 form) to call the old_function.

Variable functions

 PHP supports the concept of variable functions. This means that if a variable name has parentheses appended to it, PHP will look for a function with the same name as whatever the variable evaluates to, and will attempt to execute it. Among other things, this can be used to implement callbacks, function tables, and so forth.

Example 12-1. Variable function example

<?php

function foo() {

 echo "In foo()
\n";

}

function bar($arg = '') {

 echo "In bar(); argument was '$arg'.
\n";

}

$func = 'foo';

$func();

$func = 'bar';

$func('test');

?>

Chapter 13. Classes and Objects

class

 A class is a collection of variables and functions working with these variables. A class is defined using the following syntax:

<?php

class Cart {

 var $items; // Items in our shopping cart

 // Add $num articles of $artnr to the cart

 function add_item ($artnr, $num) {

 $this->items[$artnr] += $num;

 }

 // Take $num articles of $artnr out of the cart

 function remove_item ($artnr, $num) {

 if ($this->items[$artnr] > $num) {

 $this->items[$artnr] -= $num;

 return true;

 } else {

 return false;

 }

 }

}

?>

 This defines a class named Cart that consists of an associative array of articles in the cart and two functions to add and remove items from this cart.

 Classes are types, that is, they are blueprints for actual variables. You have to create a variable of the desired type with the new operator.

 $cart = new Cart;

 $cart->add_item("10", 1);

 This creates an object $cart of the class Cart. The function add_item() of that object is being called to add 1 item of article number 10 to the cart.

 Classes can be extensions of other classes. The extended or derived class has all variables and functions of the base class and what you add in the extended definition. This is done using the extends keyword. Multiple inheritance is not supported.

class Named_Cart extends Cart {

 var $owner;

 function set_owner ($name) {

 $this->owner = $name;

 }

}

 This defines a class Named_Cart that has all variables and functions of Cart plus an additional variable $owner and an additional function set_owner(). You create a named cart the usual way and can now set and get the carts owner. You can still use normal cart functions on named carts:

$ncart = new Named_Cart; // Create a named cart

$ncart->set_owner ("kris"); // Name that cart

print $ncart->owner; // print the cart owners name

$ncart->add_item ("10", 1); // (inherited functionality from cart)

 Within functions of a class the variable $this means this object. You have to use $this->something to access any variable or function named something within your current object.

 Constructors are functions in a class that are automatically called when you create a new instance of a class. A function becomes a constructor when it has the same name as the class.

class Auto_Cart extends Cart {

 function Auto_Cart () {

 $this->add_item ("10", 1);

 }

}

 This defines a class Auto_Cart that is a Cart plus a constructor which initializes the cart with one item of article number "10" each time a new Auto_Cart is being made with "new". Constructors can also take arguments and these arguments can be optional, which makes them much more useful.

class Constructor_Cart extends Cart {

 function Constructor_Cart ($item = "10", $num = 1) {

 $this->add_item ($item, $num);

 }

}

// Shop the same old boring stuff.

$default_cart = new Constructor_Cart;

// Shop for real...

$different_cart = new Constructor_Cart ("20", 17);

Caution

 For derived classes, the constructor of the parent class is not automatically called when the derived class's constructor is called.

Chapter 14. References explained

What are references?

 References in PHP are means to call same variable content with different names. They are not like C pointers, they are symbol table aliases. Note that in PHP, variable names and variable content are different, so same content can have different names. The most close analogy is Unix filenames and files - variable names are directory entries, while variable contents is the file itself. References can be thought of as hardlinking in Unix filesystem.

What references do?

 PHP references allow you to make two variables to refer to the same content. Meaning, when you do:

 $a =& $b

 it means that $a and $b point to the same variable.

Note: $a and $b are completely equal here, that's not $a is pointing to $b or vice versa, that's $a and $b pointing to the same place.

 The second thing references do is to pass variables by-reference. This is done by making local function variable and caller variable to be reference to the same content. Example:

 function foo(&$var) {

 $var++;

 }

 $a=5;

 foo($a);

 will make $a to be 6. This happens because in the function foo the variable $var refers to the same content as $a.

 The third thing reference can do is return by-reference.

What references aren't?

 As said above, references aren't pointers. That means, the following construct won't do what you expect:

 function foo(&$var) {

 $var =& $GLOBALS["baz"];

 }

 foo($bar);

 What will happen that $var in foo will be bound with $bar in caller, but then it will be re-bound with $GLOBALS["baz"]. There's no way to bind $bar in the caller to something else using reference mechanism, since $bar is not available in the function foo (it is represented by $var, but $var has only variable contents and not name-to-value binding in the calling symbol table).

Returning references

 Returning by-refernce it is useful when you want to use function to find variable which should be bound to. When returning references, use this syntax:

 function &find_var($param) {

 ...code...

 return $found_var;

 }

 $foo =& find_var($bar);

 $foo->x = 2;

 In this example, property of the object returned by the find_var function would be set, not of the copy, as it would be without using reference syntax.

Note: Unlike parameter passing, here you have to use & in both places - to indicate that you return by-reference, not a copy as usual, and to indicate than reference binding and not usual assignment should be done for $foo.

Unsetting references

 When you unset the reference, you just break the binding between variable name and variable content. This does not mean that variable content will be destroyed. For example:

 $a = 1;

 $b =& $a;

 unset($a);

 won't unset $b, just $a.

 Again, it might be useful to think about this as analogous to Unix unlink call.

Spotting the reference

 Many syntax constructs in PHP are implemented via referencing mechanisms, so everything told above about reference binding also apply to these constructs. Some constructs, like passing and returning by-reference, are mentioned above. Other constructs that use references are:

global

 When you declare variable as global $var you are in fact creating reference to a global variable. That means, this is the same as:

 $var =& $GLOBALS["var"];

 That means, for example, that unsetting $var won't unset global variable.

$this

 In an object method, $this is always reference to the caller object.

Part III. Features

Chapter 15. Error handling

 There are several types of errors and warnings in PHP. They are:

Table 15-1. PHP error types

	Value
	Constant
	Description
	Note

	1
	E_ERROR
	fatal run-time errors
	

	2
	E_WARNING
	run-time warnings (non fatal errors)
	

	4
	E_PARSE
	compile-time parse errors
	

	8
	E_NOTICE
	 run-time notices (less serious than warnings)
	

	16
	E_CORE_ERROR
	fatal errors that occur during PHP's initial startup
	PHP 4 only

	32
	E_CORE_WARNING
	warnings (non fatal errors) that occur during PHP's initial startup
	PHP 4 only

	64
	E_COMPILE_ERROR
	fatal compile-time errors
	PHP 4 only

	128
	E_COMPILE_WARNING
	compile-time warnings (non fatal errors)
	PHP 4 only

	256
	E_USER_ERROR
	user-generated error message
	PHP 4 only

	512
	E_USER_WARNING
	user-generated warning message
	PHP 4 only

	1024
	E_USER_NOTICE
	user-generated notice message
	PHP 4 only

	
	E_ALL
	all of the above, as supported
	

 The above values (either numerical or symbolic) are used to build up a bitmask that specifies which errors to report. You can use the bitwise operators to combine these values or mask out certain types of errors. Note that only '|', '~', '!', and '&' will be understood within php.ini, however, and that no bitwise operators will be understood within php3.ini.

 In PHP 4, the default error_reporting setting is E_ALL & ~E_NOTICE, meaning to display all errors and warnings which are not E_NOTICE-level. In PHP 3, the default setting is (E_ERROR | E_WARNING | E_PARSE), meaning the same thing. Note, however, that since constants are not supported in PHP 3's php3.ini, the error_reporting setting there must be numeric; hence, it is 7.

 The initial setting can be changed in the ini file with the error_reporting directive, in your Apache httpd.conf file with the php_error_reporting (php3_error_reporting for PHP 3) directive, and lastly it may be set at runtime within a script by using the error_reporting() function.

Warning

 When upgrading code or servers from PHP 3 to PHP 4 you should check these settings and calls to error_reporting() or you might disable reporting the new error types, especially E_COMPILE_ERROR. This may lead to empty documents without any feedback of what happened or where to look for the problem.

 All PHP expressions can also be called with the "@" prefix, which turns off error reporting for that particular expression. If an error occurred during such an expression and the track_errors feature is enabled, you can find the error message in the global variable $php_errormsg.

Warning

 Currently the @ error-control operator prefix will even disable error reporting for critical errors that will terminate script execution. Among other things, this means that if you use @ to suppress errors from a certain function and either it isn't available or has been mistyped, the script will die right there with no indication as to why.

Chapter 16. Creating and manipulating images

 PHP is not limited to creating just HTML output. It can also be used to create and manipulate image files in a variety of different image formats, including gif, png, jpg, wbmp, and xpm. Even more convenient, php can output image streams directly to a browser. You will need to compile PHP with the GD library of image functions for this to work. GD and PHP may also require other libraries, depending on which image formats you want to work with.

Example 16-1. GIF creation with PHP

<?php

 Header("Content-type: image/gif");

 $string=implode($argv," ");

 $im = imagecreatefromgif("images/button1.gif");

 $orange = ImageColorAllocate($im, 220, 210, 60);

 $px = (imagesx($im)-7.5*strlen($string))/2;

 ImageString($im,3,$px,9,$string,$orange);

 ImageGif($im);

 ImageDestroy($im);

?>

 This example would be called from a page with a tag like: The above button.php script then takes this "text" string an overlays it on top of a base image which in this case is "images/button1.gif" and outputs the resulting image. This is a very convenient way to avoid having to draw new button images every time you want to change the text of a button. With this method they are dynamically generated.

Chapter 17. HTTP authentication with PHP

 The HTTP Authentication hooks in PHP are only available when it is running as an Apache module and is hence not available in the CGI version. In an Apache module PHP script, it is possible to use the Header() function to send an "Authentication Required" message to the client browser causing it to pop up a Username/Password input window. Once the user has filled in a username and a password, the URL containing the PHP script will be called again with the variables, $PHP_AUTH_USER, $PHP_AUTH_PW and $PHP_AUTH_TYPE set to the user name, password and authentication type respectively. Only "Basic" authentication is supported at this point. See the Header() function for more information.

 An example script fragment which would force client authentication on a page would be the following:

Example 17-1. HTTP Authentication example

<?php

 if(!isset($PHP_AUTH_USER)) {

 Header("WWW-Authenticate: Basic realm=\"My Realm\"");

 Header("HTTP/1.0 401 Unauthorized");

 echo "Text to send if user hits Cancel button\n";

 exit;

 } else {

 echo "Hello $PHP_AUTH_USER.<P>";

 echo "You entered $PHP_AUTH_PW as your password.<P>";

 }

?>

 Instead of simply printing out the $PHP_AUTH_USER and $PHP_AUTH_PW, you would probably want to check the username and password for validity. Perhaps by sending a query to a database, or by looking up the user in a dbm file.

 Watch out for buggy Internet Explorer browsers out there. They seem very picky about the order of the headers. Sending the WWW-Authenticate header before the HTTP/1.0 401 header seems to do the trick for now.

 In order to prevent someone from writing a script which reveals the password for a page that was authenticated through a traditional external mechanism, the PHP_AUTH variables will not be set if external authentication is enabled for that particular page. In this case, the $REMOTE_USER variable can be used to identify the externally-authenticated user.

 Note, however, that the above does not prevent someone who controls a non-authenticated URL from stealing passwords from authenticated URLs on the same server.

 Both Netscape and Internet Explorer will clear the local browser window's authentication cache for the realm upon receiving a server response of 401. This can effectively "log out" a user, forcing them to re-enter their username and password. Some people use this to "time out" logins, or provide a "log-out" button.

Example 17-2. HTTP Authentication example forcing a new name/password

<?php

 function authenticate() {

 Header("WWW-authenticate: basic realm='Test Authentication System'");

 Header("HTTP/1.0 401 Unauthorized");

 echo "You must enter a valid login ID and password to access this resource\n";

 exit;

 }

 if(!isset($PHP_AUTH_USER) || ($SeenBefore == 1 && !strcmp($OldAuth, $PHP_AUTH_USER))) {

 authenticate();

 }

 else {

 echo "Welcome: $PHP_AUTH_USER
";

 echo "Old: $OldAuth";

 echo "<FORM ACTION=\"$PHP_SELF\" METHOD=POST>\n";

 echo "<INPUT TYPE=HIDDEN NAME=\"SeenBefore\" VALUE=\"1\">\n";

 echo "<INPUT TYPE=HIDDEN NAME=\"OldAuth\" VALUE=\"$PHP_AUTH_USER\">\n";

 echo "<INPUT TYPE=Submit VALUE=\"Re Authenticate\">\n";

 echo "</FORM>\n";

}

?>

 This behavior is not required by the HTTP Basic authentication standard, so you should never depend on this. Testing with Lynx has shown that Lynx does not clear the authentication credentials with a 401 server response, so pressing back and then forward again will open the resource (as long as the credential requirements haven't changed).

 Also note that this does not work using Microsoft's IIS server and the CGI version of PHP due to a limitation of IIS.

Chapter 18. Cookies

 PHP transparently supports HTTP cookies. Cookies are a mechanism for storing data in the remote browser and thus tracking or identifying return users. You can set cookies using the setcookie() function. Cookies are part of the HTTP header, so setcookie() must be called before any output is sent to the browser. This is the same limitation that header() has.

 Any cookies sent to you from the client will automatically be turned into a PHP variable just like GET and POST method data. If you wish to assign multiple values to a single cookie, just add [] to the cookie name. For more details see the setcookie() function.

Chapter 19. Handling file uploads

POST method uploads

 PHP is capable of receiving file uploads from any RFC-1867 compliant browser (which includes Netscape Navigator 3 or later, Microsoft Internet Explorer 3 with a patch from Microsoft, or later without a patch). This feature lets people upload both text and binary files. With PHP's authentication and file manipulation functions, you have full control over who is allowed to upload and what is to be done with the file once it has been uploaded.

 Note that PHP also supports PUT-method file uploads as used by Netscape Composer and W3C's Amaya clients. See the PUT Method Support for more details.

 A file upload screen can be built by creating a special form which looks something like this:

Example 19-1. File Upload Form

<FORM ENCTYPE="multipart/form-data" ACTION="_URL_" METHOD=POST>

<INPUT TYPE="hidden" name="MAX_FILE_SIZE" value="1000">

Send this file: <INPUT NAME="userfile" TYPE="file">

<INPUT TYPE="submit" VALUE="Send File">

</FORM>

 The _URL_ should point to a PHP file. The MAX_FILE_SIZE hidden field must precede the file input field and its value is the maximum filesize accepted. The value is in bytes. In this destination file, the following variables will be defined upon a successful upload:

•
 $userfile - The temporary filename in which the uploaded file was stored on the server machine.

•
 $userfile_name - The original name or path of the file on the sender's system.

•
 $userfile_size - The size of the uploaded file in bytes.

•
 $userfile_type - The mime type of the file if the browser provided this information. An example would be "image/gif".

 Note that the "$userfile" part of the above variables is whatever the name of the INPUT field of TYPE=file is in the upload form. In the above upload form example, we chose to call it "userfile".

 Files will by default be stored in the server's default temporary directory. This can be changed by setting the environment variable TMPDIR in the environment in which PHP runs. Setting it using putenv() from within a PHP script will not work.

 The PHP script which receives the uploaded file should implement whatever logic is necessary for determining what should be done with the uploaded file. You can for example use the $file_size variable to throw away any files that are either too small or too big. You could use the $file_type variable to throw away any files that didn't match a certain type criteria. Whatever the logic, you should either delete the file from the temporary directory or move it elsewhere.

 The file will be deleted from the temporary directory at the end of the request if it has not been moved away or renamed.

Common Pitfalls

 The MAX_FILE_SIZE item cannot specify a file size greater than the file size that has been set in the upload_max_filesize in the PHP3.ini file or the corresponding php3_upload_max_filesize Apache .conf directive. The default is 2 Megabytes.

 Please note that the CERN httpd seems to strip off everything starting at the first whitespace in the content-type mime header it gets from the client. As long as this is the case, CERN httpd will not support the file upload feature.

Uploading multiple files

 It is possible to upload multiple files simultaneously and have the information organized automatically in arrays for you. To do so, you need to use the same array submission syntax in the HTML form as you do with multiple selects and checkboxes:

Note: Support for multiple file uploads was added in version 3.0.10.

Example 19-2. Uploading multiple files

<form action="file-upload.html" method="post" enctype="multipart/form-data">

 Send these files:

 <input name="userfile[]" type="file">

 <input name="userfile[]" type="file">

 <input type="submit" value="Send files">

</form>

 When the above form is submitted, the arrays $userfile, $userfile_name, and $userfile_size will be formed in the global scope (as well as in $HTTP_POST_FILES ($HTTP_POST_VARS in PHP 3)). Each of these will be a numerically indexed array of the appropriate values for the submitted files.

 For instance, assume that the filenames /home/test/review.html and /home/test/xwp.out are submitted. In this case, $userfile_name[0] would contain the value review.html, and $userfile_name[1] would contain the value xwp.out. Similarly, $userfile_size[0] would contain review.html's filesize, and so forth.

 $userfile['name'][0], $userfile['tmp_name'][0], $userfile['size'][0], and $userfile['type'][0] are also set.

PUT method support

 PHP provides support for the HTTP PUT method used by clients such as Netscape Composer and W3C Amaya. PUT requests are much simpler than a file upload and they look something like this:

PUT /path/filename.html HTTP/1.1

 This would normally mean that the remote client would like to save the content that follows as: /path/filename.html in your web tree. It is obviously not a good idea for Apache or PHP to automatically let everybody overwrite any files in your web tree. So, to handle such a request you have to first tell your web server that you want a certain PHP script to handle the request. In Apache you do this with the Script directive. It can be placed almost anywhere in your Apache configuration file. A common place is inside a <Directory> block or perhaps inside a <Virtualhost> block. A line like this would do the trick:

Script PUT /put.php3

 This tells Apache to send all PUT requests for URIs that match the context in which you put this line to the put.php3 script. This assumes, of course, that you have PHP enabled for the .php3 extension and PHP is active.

 Inside your put.php3 file you would then do something like this:

<? copy($PHP_UPLOADED_FILE_NAME,$DOCUMENT_ROOT.$REQUEST_URI); ?>

 This would copy the file to the location requested by the remote client. You would probably want to perform some checks and/or authenticate the user before performing this file copy. The only trick here is that when PHP sees a PUT-method request it stores the uploaded file in a temporary file just like those handled bu the POST-method. When the request ends, this temporary file is deleted. So, your PUT handling PHP script has to copy that file somewhere. The filename of this temporary file is in the $PHP_PUT_FILENAME variable, and you can see the suggested destination filename in the $REQUEST_URI (may vary on non-Apache web servers). This destination filename is the one that the remote client specified. You do not have to listen to this client. You could, for example, copy all uploaded files to a special uploads directory.

Chapter 20. Using remote files

 As long as support for the "URL fopen wrapper" is enabled when you configure PHP (which it is unless you explicitly pass the --disable-url-fopen-wrapper flag to configure), you can use HTTP and FTP URLs with most functions that take a filename as a parameter, including the require() and include() statements.

Note: You can't use remote files in include() and require() statements on Windows.

 For example, you can use this to open a file on a remote web server, parse the output for the data you want, and then use that data in a database query, or simply to output it in a style matching the rest of your website.

Example 20-1. Getting the title of a remote page

<?php

$file = fopen ("http://www.php.net/", "r");

if (!$file) {

 echo "<p>Unable to open remote file.\n";

 exit;

}

while (!feof ($file)) {

 $line = fgets ($file, 1024);

 /* This only works if the title and its tags are on one line */

 if (eregi ("<title>(.*)</title>", $line, $out)) {

 $title = $out[1];

 break;

 }

}

fclose($file);

?>

 You can also write to files on an FTP as long you connect as a user with the correct access rights, and the file doesn't exist already. To connect as a user other than 'anonymous', you need to specify the username (and possibly password) within the URL, such as 'ftp://user:password@ftp.example.com/path/to/file'. (You can use the same sort of syntax to access files via HTTP when they require Basic authentication.)

Example 20-2. Storing data on a remote server

<?php

$file = fopen ("ftp://ftp.php.net/incoming/outputfile", "w");

if (!$file) {

 echo "<p>Unable to open remote file for writing.\n";

 exit;

}

/* Write the data here. */

fputs ($file, "$HTTP_USER_AGENT\n");

fclose ($file);

?>

Note: You might get the idea from the example above to use this technique to write to a remote log, but as mentioned above, you can only write to a new file using the URL fopen() wrappers. To do distributed logging like that, you should take a look at syslog().

Chapter 21. Connection handling

Note: The following applies to 3.0.7 and later.

 Internally in PHP a connection status is maintained. There are 3 possible states:

•
0 - NORMAL

•
1 - ABORTED

•
2 - TIMEOUT

 When a PHP script is running normally the NORMAL state, is active. If the remote client disconnects the ABORTED state flag is turned on. A remote client disconnect is usually caused by the user hitting his STOP button. If the PHP-imposed time limit (see set_time_limit()) is hit, the TIMEOUT state flag is turned on.

 You can decide whether or not you want a client disconnect to cause your script to be aborted. Sometimes it is handy to always have your scripts run to completion even if there is no remote browser receiving the output. The default behaviour is however for your script to be aborted when the remote client disconnects. This behaviour can be set via the ignore_user_abort php3.ini directive as well as through the corresponding php3_ignore_user_abort Apache .conf directive or with the ignore_user_abort() function. If you do not tell PHP to ignore a user abort and the user aborts, your script will terminate. The one exception is if you have registered a shutdown function using register_shutdown_function(). With a shutdown function, when the remote user hits his STOP button, the next time your script tries to output something PHP will detect that the connection has been aborted and the shutdown function is called. This shutdown function will also get called at the end of your script terminating normally, so to do something different in case of a client diconnect you can use the connection_aborted() function. This function will return true if the connection was aborted.

 Your script can also be terminated by the built-in script timer. The default timeout is 30 seconds. It can be changed using the max_execution_time php3.ini directive or the corresponding php3_max_execution_time Apache .conf directive as well as with the set_time_limit() function. When the timer expires the script will be aborted and as with the above client disconnect case, if a shutdown function has been registered it will be called. Within this shutdown function you can check to see if a timeout caused the shutdown function to be called by calling the connection_timeout() function. This function will return true if a timeout caused the shutdown function to be called.

 One thing to note is that both the ABORTED and the TIMEOUT states can be active at the same time. This is possible if you tell PHP to ignore user aborts. PHP will still note the fact that a user may have broken the connection, but the script will keep running. If it then hits the time limit it will be aborted and your shutdown function, if any, will be called. At this point you will find that connection_timeout() and connection_aborted() return true. You can also check both states in a single call by using the connection_status(). This function returns a bitfield of the active states. So, if both states are active it would return 3, for example.

Chapter 22. Persistent database connections

 Persistent connections are SQL links that do not close when the execution of your script ends. When a persistent connection is requested, PHP checks if there's already an identical persistent connection (that remained open from earlier) - and if it exists, it uses it. If it does not exist, it creates the link. An 'identical' connection is a connection that was opened to the same host, with the same username and the same password (where applicable).

 People who aren't thoroughly familiar with the way web servers work and distribute the load may mistake persistent connects for what they're not. In particular, they do not give you an ability to open 'user sessions' on the same SQL link, they do not give you an ability to build up a transaction efficently, and they don't do a whole lot of other things. In fact, to be extremely clear about the subject, persistent connections don't give you any functionality that wasn't possible with their non-persistent brothers.

 Why?

 This has to do with the way web servers work. There are three ways in which your web server can utilize PHP to generate web pages.

 The first method is to use PHP as a CGI "wrapper". When run this way, an instance of the PHP interpreter is created and destroyed for every page request (for a PHP page) to your web server. Because it is destroyed after every request, any resources that it acquires (such as a link to an SQL database server) are closed when it is destroyed. In this case, you do not gain anything from trying to use persistent connections -- they simply don't persist.

 The second, and most popular, method is to run PHP as a module in a multiprocess web server, which currently only includes Apache. A multiprocess server typically has one process (the parent) which coordinates a set of processes (its children) who actually do the work of serving up web pages. When each request comes in from a a client, it is handed off to one of the children that is not already serving another client. This means that when the same client makes a second request to the server, it may be serviced by a different child process than the first time. What a persistent connection does for you in this case it make it so each child process only needs to connect to your SQL server the first time that it serves a page that makes us of such a connection. When another page then requires a connection to the SQL server, it can reuse the connection that child established earlier.

 The last method is to use PHP as a plug-in for a multithreaded web server. Currently this is only theoretical -- PHP does not yet work as a plug-in for any multithreaded web servers. Work is progressing on support for ISAPI, WSAPI, and NSAPI (on Windows), which will all allow PHP to be used as a plug-in on multithreaded servers like Netscape FastTrack, Microsoft's Internet Information Server (IIS), and O'Reilly's WebSite Pro. When this happens, the behavior will be essentially the same as for the multiprocess model described before.

 If persistent connections don't have any added functionality, what are they good for?

 The answer here is extremely simple -- efficiency. Persistent connections are good if the overhead to create a link to your SQL server is high. Whether or not this overhead is really high depends on many factors. Like, what kind of database it is, whether or not it sits on the same computer on which your web server sits, how loaded the machine the SQL server sits on is and so forth. The bottom line is that if that connection overhead is high, persistent connections help you considerably. They cause the child process to simply connect only once for its entire lifespan, instead of every time it processes a page that requires connecting to the SQL server. This means that for every child that opened a persistent connection will have its own open persistent connection to the server. For example, if you had 20 different child processes that ran a script that made a persistent connection to your SQL server, you'd have 20 different connections to the SQL server, one from each child.

 An important summary. Persistent connections were designed to have one-to-one mapping to regular connections. That means that you should always be able to replace persistent connections with non-persistent connections, and it won't change the way your script behaves. It may (and probably will) change the efficiency of the script, but not its behavior!

Part IV. Function Reference

I. Apache-specific Functions

apache_lookup_uri (PHP3 >= 3.0.4, PHP4)

 Perform a partial request for the specified URI and return all info about it

class apache_lookup_uri (string filename)

 This performs a partial request for a URI. It goes just far enough to obtain all the important information about the given resource and returns this information in a class. The properties of the returned class are:

	status

	the_request

	status_line

	method

	content_type

	handler

	uri

	filename

	path_info

	args

	boundary

	no_cache

	no_local_copy

	allowed

	send_bodyct

	bytes_sent

	byterange

	clength

	unparsed_uri

	mtime

	request_time

Note: Apache_lookup_uri() only works when PHP is installed as an Apache module.

apache_note (PHP3 >= 3.0.2, PHP4)

Get and set apache request notes

string apache_note (string note_name [, string note_value])

 Apache_note() is an Apache-specific function which gets and sets values in a request's notes table. If called with one argument, it returns the current value of note note_name. If called with two arguments, it sets the value of note note_name to note_value and returns the previous value of note note_name.

getallheaders (PHP3 , PHP4)

Fetch all HTTP request headers

array getallheaders (void)

 This function returns an associative array of all the HTTP headers in the current request.

Note: You can also get at the value of the common CGI variables by reading them from the environment, which works whether or not you are using PHP as an Apache module. Use phpinfo() to see a list of all of the environment variables defined this way.

Example 1. getallheaders() Example

$headers = getallheaders();

while (list ($header, $value) = each ($headers)) {

 echo "$header: $value
\n";

}

 This example will display all the request headers for the current request.

Note: Getallheaders() is currently only supported when PHP runs as an Apache module.

virtual (PHP3 , PHP4)

Perform an Apache sub-request

int virtual (string filename)

 Virtual() is an Apache-specific function which is equivalent to <!--#include virtual...--> in mod_include. It performs an Apache sub-request. It is useful for including CGI scripts or .shtml files, or anything else that you would parse through Apache. Note that for a CGI script, the script must generate valid CGI headers. At the minimum that means it must generate a Content-type header. For PHP files, you need to use include() or require(); virtual() cannot be used to include a document which is itself a PHP file.

II. Array Functions

array (unknown)

 Create an array

array array ([mixed ...])

 Returns an array of the parameters. The parameters can be given an index with the => operator.

Note: Array() is a language construct used to represent literal arrays, and not a regular function.

 The following example demonstrates how to create a two-dimensional array, how to specify keys for associative arrays, and how to skip-and-continue numeric indices in normal arrays.

Example 1. Array() example

$fruits = array (

 "fruits" => array ("a"=>"orange", "b"=>"banana", "c"=>"apple"),

 "numbers" => array (1, 2, 3, 4, 5, 6),

 "holes" => array ("first", 5 => "second", "third")

);

 See also: list().

array_count_values (PHP4 >= 4.0b4)

Counts all the values of an array

array array_count_values (array input)

 Array_count_values() returns an array using the values of the input array as keys and their frequency in input as values.

Example 1. Array_count_values() example

$array = array (1, "hello", 1, "world", "hello");

array_count_values ($array); // returns array (1=>2, "hello"=>2, "world"=>1)

array_diff (PHP4 >= 4.0.1)

Computes the difference of arrays

array array_diff (array array1, array array2 [, array ...])

 Array_diff() returns an array containing all the values of array1 that are not present in any of the other arguments. Note that keys are preserved.

Example 1. Array_diff() example

$array1 = array ("a" => "green", "red", "blue");

$array2 = array ("b" => "green", "yellow", "red");

$result = array_diff ($array1, $array2);

 This makes $result have array ("blue");

 See also array_intersect().

array_flip (PHP4 >= 4.0b4)

Flip all the values of an array

array array_flip (array trans)

 Array_flip() returns an array in flip order.

Example 1. Array_flip() example

$trans = array_flip ($trans);

$original = strtr ($str, $trans);

array_intersect (PHP4 >= 4.0.1)

Computes the intersection of arrays

array array_intersect (array array1, array array2 [, array ...])

 Array_intersect() returns an array containing all the values of array1 that are present in all the arguments. Note that keys are preserved.

Example 1. Array_intersect() example

$array1 = array ("a" => "green", "red", "blue");

$array2 = array ("b" => "green", "yellow", "red");

$result = array_intersect ($array1, $array2);

 This makes $result have array ("a" => "green", "red");

 See also array_diff().

array_keys (PHP4)

Return all the keys of an array

array array_keys (array input [, mixed search_value])

 Array_keys() returns the keys, numeric and string, from the input array.

 If the optional search_value is specified, then only the keys for that value are returned. Otherwise, all the keys from the input are returned.

Example 1. Array_keys() example

$array = array (0 => 100, "color" => "red");

array_keys ($array); // returns array (0, "color")

$array = array (1, 100, 2, 100);

array_keys ($array, 100); // returns array (0, 2)

 See also array_values().

array_merge (PHP4)

Merge two or more arrays

array array_merge (array array1, array array2 [, array ...])

 Array_merge() merges the elements of two or more arrays together so that the values of one are appended to the end of the previous one. It returns the resulting array.

 If the input arrays have the same string keys, then the later value for that key will overwrite the previous one. If, however, the arrays have the same numeric key, the later value will not overwrite the original value, but will be appended.

Example 1. array_merge() example

$array1 = array ("color" => "red", 2, 4);

$array2 = array ("a", "b", "color" => "green", "shape" => "trapezoid", 4);

array_merge ($array1, $array2);

 Resulting array will be array("color" => "green", 2, 4, "a", "b", "shape" => "trapezoid", 4).

 See also array_merge_recursive().

array_merge_recursive (PHP4 >= 4.0.1)

Merge two or more arrays recursively

array array_merge_recursive (array array1, array array2 [, array ...])

 Array_merge_recursive() merges the elements of two or more arrays together so that the values of one are appended to the end of the previous one. It returns the resulting array.

 If the input arrays have the same string keys, then the values for these keys are merged together into an array, and this is done recursively, so that if one of the values is an array itself, the function will merge it with a corresponding entry in another array too. If, however, the arrays have the same numeric key, the later value will not overwrite the original value, but will be appended.

Example 1. Array_merge_recursive() example

$ar1 = array ("color" => array ("favorite" => "red"), 5);

$ar2 = array (10, "color" => array ("favorite" => "green", "blue"));

$result = array_merge_recursive ($ar1, $ar2);

 Resulting array will be array ("color" => array ("favorite" => array ("red", "green"), "blue"), 5, 10).

 See also array_merge().

array_multisort (PHP4 >= 4.0b4)

Sort multiple or multi-dimensional arrays

bool array_multisort (array ar1 [, mixed arg [, mixed ... [, array ...]]])

 Array_multisort() can be used to sort several arrays at once or a multi-dimensional array according by one of more dimensions. It maintains key association when sorting.

 The input arrays are treated as columns of a table to be sorted by rows - this resembles the functionality of SQL ORDER BY clause. The first array is the primary one to sort by. The rows (values) in that array that compare the same are sorted by the next input array, and so on.

 The argument structure of this function is a bit unusual, but flexible. The very first argument has to be an array. Subsequently, each argument can be either an array or a sorting flag from the following lists.

 Sorting order flags:

•
SORT_ASC - sort in ascending order

•
SORT_DESC - sort in descending order

 Sorting type flags:

•
SORT_REGULAR - compare items normally

•
SORT_NUMERIC - compare items numerically

•
SORT_STRING - compare items as strings

 No two sorting flags of the same type can be specified after each array. The sortings flags specified after an array argument apply only to that array - they are reset to default SORT_ASC and SORT_REGULAR after before each new array argument.

 Returns true on success, false on failure.

Example 1. Sorting multiple arrays

$ar1 = array ("10", 100, 100, "a");

$ar2 = array (1, 3, "2", 1);

array_multisort ($ar1, $ar2);

 In this example, after sorting, the first array will contain 10, "a", 100, 100. The second array will contain 1, 1, 2, "3". The entries in the second array corresponding to the identical entries in the first array (100 and 100) were sorted as well.

Example 2. Sorting multi-dimensional array

$ar = array (array ("10", 100, 100, "a"), array (1, 3, "2", 1));

array_multisort ($ar[0], SORT_ASC, SORT_STRING,

 $ar[1], SORT_NUMERIC, SORT_DESC);

 In this example, after sorting, the first array will contain 10, 100, 100, "a" (it was sorted as strings in ascending order), and the second one will contain 1, 3, "2", 1 (sorted as numbers, in descending order).

array_pad (PHP4 >= 4.0b4)

 Pad array to the specified length with a value

array array_pad (array input, int pad_size, mixed pad_value)

 Array_pad() returns a copy of the input padded to size specified by pad_size with value pad_value. If pad_size is positive then the array is padded on the right, if it's negative then on the left. If the absolute value of pad_size is less than or equal to the length of the input then no padding takes place.

Example 1. Array_pad() example

$input = array (12, 10, 9);

$result = array_pad ($input, 5, 0);

// result is array (12, 10, 9, 0, 0)

$result = array_pad ($input, -7, -1);

// result is array (-1, -1, -1, -1, 12, 10, 9)

$result = array_pad ($input, 2, "noop");

// not padded

array_pop (PHP4)

Pop the element off the end of array

mixed array_pop (array array)

 Array_pop() pops and returns the last value of the array, shortening the array by one element.

Example 1. Array_pop() example

$stack = array ("orange", "apple", "raspberry");

$fruit = array_pop ($stack);

 After this, $stack has only 2 elements: "orange" and "apple", and $fruit has "raspberry".

 See also array_push(), array_shift(), and array_unshift().

array_push (PHP4)

 Push one or more elements onto the end of array

int array_push (array array, mixed var [, mixed ...])

 Array_push() treats array as a stack, and pushes the passed variables onto the end of array. The length of array increases by the number of variables pushed. Has the same effect as:

$array[] = $var;

 repeated for each var.

 Returns the new number of elements in the array.

Example 1. Array_push() example

$stack = array (1, 2);

array_push ($stack, "+", 3);

 This example would result in $stack having 4 elements: 1, 2, "+", and 3.

 See also: array_pop(), array_shift(), and array_unshift().

array_rand (PHP4 >= 4.0.0)

 Pick one or more random entries out of an array

mixed array_rand (array input [, int num_req])

 Array_rand() is rather useful when you want to pick one or more random entries out of an array. It takes an input array and an optional argument num_req which specifies how many entries you want to pick - if not specified, it defaults to 1.

 If you are picking only one entry, array_rand() returns the key for a random entry. Otherwise, it returns an array of keys for the random entries. This is done so that you can pick random keys as well as values out of the array.

 Don't forget to call srand() to seed the random number generator.

Example 1. Array_rand() example

srand ((double) microtime() * 10000000);

$input = array ("Neo", "Morpheus", "Trinity", "Cypher", "Tank");

$rand_keys = array_rand ($input, 2);

print $input[$rand_keys[0]]."\n";

print $input[$rand_keys[1]]."\n";

array_reverse (PHP4 >= 4.0b4)

 Return an array with elements in reverse order

array array_reverse (array array)

 Array_reverse() takes input array and returns a new array with the order of the elements reversed.

Example 1. Array_reverse() example

$input = array ("php", 4.0, array ("green", "red"));

$result = array_reverse ($input);

 This makes $result have array (array ("green", "red"), 4.0, "php").

array_shift (PHP4)

 Pop an element off the beginning of array

mixed array_shift (array array)

 Array_shift() shifts the first value of the array off and returns it, shortening the array by one element and moving everything down.

Example 1. Array_shift() example

$args = array ("-v", "-f");

$opt = array_shift ($args);

 This would result in $args having one element "-f" left, and $opt being "-v".

 See also array_unshift(), array_push(), and array_pop().

array_slice (PHP4)

Extract a slice of the array

array array_slice (array array, int offset [, int length])

 Array_slice() returns a sequence of elements from the array specified by the offset and length parameters.

 If offset is positive, the sequence will start at that offset in the array. If offset is negative, the sequence will start that far from the end of the array.

 If length is given and is positive, then the sequence will have that many elements in it. If length is given and is negative then the sequence will stop that many elements from the end of the array. If it is omitted, then the sequence will have everything from offset up until the end of the array.

Example 1. Array_slice() examples

$input = array ("a", "b", "c", "d", "e");

$output = array_slice ($input, 2); // returns "c", "d", and "e"

$output = array_slice ($input, 2, -1); // returns "c", "d"

$output = array_slice ($input, -2, 1); // returns "d"

$output = array_slice ($input, 0, 3); // returns "a", "b", and "c"

 See also array_splice().

array_splice (PHP4)

 Remove a portion of the array and replace it with something else

array array_splice (array input, int offset [, int length [, array replacement]])

 Array_splice() removes the elements designated by offset and length from the input array, and replaces them with the elements of the replacement array, if supplied.

 If offset is positive then the start of removed portion is at that offset from the beginning of the input array. If offset is negative then it starts that far from the end of the input array.

 If length is omitted, removes everything from offset to the end of the array. If length is specified and is positive, then that many elements will be removed. If length is specified and is negative then the end of the removed portion will be that many elements from the end of the array. Tip: to remove everything from offset to the end of the array when replacement is also specified, use count($input) for length.

 If replacement array is specified, then the removed elements are replaced with elements from this array. If offset and length are such that nothing is removed, then the elements from the replacement array are inserted in the place specified by the offset. Tip: if the replacement is just one element it is not necessary to put array() around it, unless the element is an array itself.

 The following equivalences hold:

array_push ($input, $x, $y) array_splice ($input, count ($input), 0,

 array ($x, $y))

array_pop ($input) array_splice ($input, -1)

array_shift ($input) array_splice ($input, 0, 1)

array_unshift ($input, $x, $y) array_splice ($input, 0, 0, array ($x, $y))

$a[$x] = $y array_splice ($input, $x, 1, $y)

 Returns the array consisting of removed elements.

Example 1. Array_splice() examples

$input = array ("red", "green", "blue", "yellow");

array_splice ($input, 2); // $input is now array ("red", "green")

array_splice ($input, 1, -1); // $input is now array ("red", "yellow")

array_splice ($input, 1, count($input), "orange");

 // $input is now array ("red", "orange")

array_splice ($input, -1, 1, array("black", "maroon"));

 // $input is now array ("red", "green",

 // "blue", "black", "maroon")

 See also array_slice().

array_unique (PHP4 >= 4.0.1)

Removes duplicate values from an array

array array_unique (array array)

 Array_unique() takes input array and returns a new array without duplicate values. Note that keys are preserved.

Example 1. Array_unique() example

$input = array ("a" => "green", "red", "b" => "green", "blue", "red");

$result = array_unique ($input);

 This makes $result have array ("a" => "green", "red", "blue");

array_unshift (PHP4)

 Push one or more elements onto the beginning of array

int array_unshift (array array, mixed var [, mixed ...])

 Array_unshift() prepends passed elements to the front of the array. Note that the list of elements is prepended as a whole, so that the prepended elements stay in the same order.

 Returns the new number of elements in the array.

Example 1. Array_unshift() example

$queue = array ("p1", "p3");

array_unshift ($queue, "p4", "p5", "p6");

 This would result in $queue having 5 elements: "p4", "p5", "p6", "p1", and "p3".

 See also array_shift(), array_push(), and array_pop().

array_values (PHP4)

Return all the values of an array

array array_values (array input)

 Array_values() returns all the values from the input array.

Example 1. Array_values() example

$array = array ("size" => "XL", "color" => "gold");

array_values ($array); // returns array ("XL", "gold")

array_walk (PHP3 >= 3.0.3, PHP4)

 Apply a user function to every member of an array

int array_walk (array arr, string func, mixed userdata)

 Applies the function named by func to each element of arr. func will be passed array value as the first parameter and array key as the second parameter. If userdata is supplied, it will be passed as the third parameter to the user function.

 If func requires more than two or three arguments, depending on userdata, a warning will be generated each time array_walk() calls func. These warnings may be suppressed by prepending the '@' sign to the array_walk() call, or by using error_reporting().

Note: If func needs to be working with the actual values of the array, specify that the first parameter of func should be passed by reference. Then any changes made to those elements will be made in the array itself.

Note: Passing the key and userdata to func was added in 4.0.

In PHP 4 reset() needs to be called as necessary since array_walk() does not reset the array by default.

Example 1. Array_walk() example

$fruits = array ("d"=>"lemon", "a"=>"orange", "b"=>"banana", "c"=>"apple");

function test_alter (&$item1, $key, $prefix) {

 $item1 = "$prefix: $item1";

}

function test_print ($item2, $key) {

 echo "$key. $item2
\n";

}

array_walk ($fruits, 'test_print');

reset ($fruits);

array_walk ($fruits, 'test_alter', 'fruit');

reset ($fruits);

array_walk ($fruits, 'test_print');

 See also each() and list().

arsort (PHP3 , PHP4)

 Sort an array in reverse order and maintain index association

void arsort (array array [, int sort_flags])

 This function sorts an array such that array indices maintain their correlation with the array elements they are associated with. This is used mainly when sorting associative arrays where the actual element order is significant.

Example 1. Arsort() example

$fruits = array ("d"=>"lemon", "a"=>"orange", "b"=>"banana", "c"=>"apple");

arsort ($fruits);

reset ($fruits);

while (list ($key, $val) = each ($fruits)) {

 echo "$key = $val\n";

}

 This example would display:

fruits[a] = orange

fruits[d] = lemon

fruits[b] = banana

fruits[c] = apple

 The fruits have been sorted in reverse alphabetical order, and the index associated with each element has been maintained.

 You may modify the behavior of the sort using the optional parameter sort_flags, for details see sort().

 See also: asort(), rsort(), ksort(), and sort().

asort (PHP3 , PHP4)

Sort an array and maintain index association

void asort (array array [, int sort_flags])

 This function sorts an array such that array indices maintain their correlation with the array elements they are associated with. This is used mainly when sorting associative arrays where the actual element order is significant.

Example 1. Asort() example

$fruits = array ("d"=>"lemon", "a"=>"orange", "b"=>"banana", "c"=>"apple");

asort ($fruits);

reset ($fruits);

while (list ($key, $val) = each ($fruits)) {

 echo "$key = $val\n";

}

 This example would display:

fruits[c] = apple

fruits[b] = banana

fruits[d] = lemon

fruits[a] = orange

 The fruits have been sorted in alphabetical order, and the index associated with each element has been maintained.

 You may modify the behavior of the sort using the optional parameter sort_flags, for details see sort().

 See also arsort(), rsort(), ksort(), and sort().

compact (PHP4)

 Create array containing variables and their values

array compact (mixed varname [, mixed ...])

 Compact() takes a variable number of parameters. Each parameter can be either a string containing the name of the variable, or an array of variable names. The array can contain other arrays of variable names inside it; compact() handles it recursively.

 For each of these, compact() looks for a variable with that name in the current symbol table and adds it to the output array such that the variable name becomes the key and the contents of the variable become the value for that key. In short, it does the opposite of extract(). It returns the output array with all the variables added to it.

Example 1. Compact() example

$city = "San Francisco";

$state = "CA";

$event = "SIGGRAPH";

$location_vars = array ("city", "state");

$result = compact ("event", $location_vars);

 After this, $result will be array ("event" => "SIGGRAPH", "city" => "San Francisco", "state" => "CA").

 See also extract().

count (PHP3 , PHP4)

Count elements in a variable

int count (mixed var)

 Returns the number of elements in var, which is typically an array (since anything else will have one element).

 Returns 1 if the variable is not an array.

 Returns 0 if the variable is not set.

Warning

 Count() may return 0 for a variable that isn't set, but it may also return 0 for a variable that has been initialized with an empty array. Use isset() to test if a variable is set.

 See also: sizeof(), isset(), and is_array().

current (PHP3 , PHP4)

Return the current element in an array

mixed current (array array)

 Every array has an internal pointer to its "current" element, which is initialized to the first element inserted into the array.

 The current() function simply returns the array element that's currently being pointed by the internal pointer. It does not move the pointer in any way. If the internal pointer points beyond the end of the elements list, current() returns false.

Warning

 If the array contains empty elements (0 or "", the empty string) then this function will return false for these elements as well. This makes it impossible to determine if you are really at the end of the list in such an array using current(). To properly traverse an array that may contain empty elements, use the each() function.

 See also: end(), next(), prev(), and reset().

each (PHP3 , PHP4)

 Return the next key and value pair from an array

array each (array array)

 Returns the current key and value pair from the array array and advances the array cursor. This pair is returned in a four-element array, with the keys 0, 1, key, and value. Elements 0 and key contain the key name of the array element, and 1 and value contain the data.

 If the internal pointer for the array points past the end of the array contents, each() returns false.

Example 1. Each() examples

$foo = array ("bob", "fred", "jussi", "jouni", "egon", "marliese");

$bar = each ($foo);

 $bar now contains the following key/value pairs:

•
0 => 0

•
1 => 'bob'

•
key => 0

•
value => 'bob'

$foo = array ("Robert" => "Bob", "Seppo" => "Sepi");

$bar = each ($foo);

 $bar now contains the following key/value pairs:

•
0 => 'Robert'

•
1 => 'Bob'

•
key => 'Robert'

•
value => 'Bob'

 Each() is typically used in conjunction with list() to traverse an array; for instance, $HTTP_POST_VARS:

Example 2. Traversing $HTTP_POST_VARS with each()

echo "Values submitted via POST method:
";

reset ($HTTP_POST_VARS);

while (list ($key, $val) = each ($HTTP_POST_VARS)) {

 echo "$key => $val
";

}

 After each() has executed, the array cursor will be left on the next element of the array, or on the last element if it hits the end of the array.

 See also key(), list(), current(), reset(), next(), and prev().

end (PHP3 , PHP4)

 Set the internal pointer of an array to its last element

end (array array)

 End() advances array's internal pointer to the last element.

 See also: current(), each(), end(), next(), and reset().

extract (PHP3 >= 3.0.7, PHP4)

 Import variables into the symbol table from an array

void extract (array var_array [, int extract_type [, string prefix]])

 This function is used to import variables from an array into the current symbol table. It takes associative array var_array and treats keys as variable names and values as variable values. For each key/value pair it will create a variable in the current symbol table, subject to extract_type and prefix parameters.

 Extract() checks for colissions with existing variables. The way collisions are treated is determined by extract_type. It can be one of the following values:

EXTR_OVERWRITE

 If there is a collision, overwrite the existing variable.

EXTR_SKIP

 If there is a collision, don't overwrite the existing variable.

EXTR_PREFIX_SAME

If there is a collision, prefix the new variable with prefix.

EXTR_PREFIX_ALL

 Prefix all variables with prefix.

 If extract_type is not specified, it is assumed to be EXTR_OVERWRITE.

 Note that prefix is only required if extract_type is EXTR_PREFIX_SAME or EXTR_PREFIX_ALL.

 Extract() checks each key to see if it constitues a valid variable name, and if it does only then does it proceed to import it.

 A possible use for extract is to import into symbol table variables contained in an associative array returned by wddx_deserialize().

Example 1. Extract() example

<php?

/* Suppose that $var_array is an array returned from

 wddx_deserialize */

$size = "large";

$var_array = array ("color" => "blue",

 "size" => "medium",

 "shape" => "sphere");

extract ($var_array, EXTR_PREFIX_SAME, "wddx");

print "$color, $size, $shape, $wddx_size\n";

?>

 The above example will produce:

blue, large, sphere, medium

 The $size wasn't overwritten, becaus we specified EXTR_PREFIX_SAME, which resulted in $wddx_size being created. If EXTR_SKIP was specified, then $wddx_size wouldn't even have been created. EXTR_OVERWRITE would have cause $size to have value "medium", and EXTR_PREFIX_ALL would result in new variables being named $wddx_color, $wddx_size, and $wddx_shape.

in_array (PHP4)

Return true if a value exists in an array

bool in_array (mixed needle, array haystack)

 Searches haystack for needle and returns true if it is found in the array, false otherwise.

Example 1. In_array() example

$os = array ("Mac", "NT", "Irix", "Linux");

if (in_array ("Irix", $os))

 print "Got Irix";

key (PHP3 , PHP4)

Fetch a key from an associative array

mixed key (array array)

 Key() returns the index element of the current array position.

 See also current() and next().

krsort (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Sort an array by key in reverse order

int krsort (array array [, int sort_flags])

 Sorts an array by key in reverse order, maintaining key to data correlations. This is useful mainly for associative arrays.

Example 1. Krsort() example

$fruits = array ("d"=>"lemon", "a"=>"orange", "b"=>"banana", "c"=>"apple");

krsort ($fruits);

reset ($fruits);

while (list ($key, $val) = each ($fruits)) {

 echo "$key -> $val\n";

}

 This example would display:

fruits[d] = lemon

fruits[c] = apple

fruits[b] = banana

fruits[a] = orange

 You may modify the behavior of the sort using the optional parameter sort_flags, for details see sort().

 See also asort(), arsort(), ksort() sort(), and rsort().

ksort (PHP3 , PHP4)

Sort an array by key

int ksort (array array [, int sort_flags])

 Sorts an array by key, maintaining key to data correlations. This is useful mainly for associative arrays.

Example 1. Ksort() example

$fruits = array ("d"=>"lemon", "a"=>"orange", "b"=>"banana", "c"=>"apple");

ksort ($fruits);

reset ($fruits);

while (list ($key, $val) = each ($fruits)) {

 echo "$key -> $val\n";

}

 This example would display:

fruits[a] = orange

fruits[b] = banana

fruits[c] = apple

fruits[d] = lemon

 You may modify the behavior of the sort using the optional parameter sort_flags, for details see sort().

 See also asort(), arsort(), sort(), and rsort().

list (unknown)

 Assign variables as if they were an array

void list(...);

 Like array(), this is not really a function, but a language construct. list() is used to assign a list of variables in one operation.

Example 1. list() example

<table>

 <tr>

 <th>Employee name</th>

 <th>Salary</th>

 </tr>

<?php

$result = mysql ($conn, "SELECT id, name, salary FROM employees");

while (list ($id, $name, $salary) = mysql_fetch_row ($result)) {

 print (" <tr>\n".

 " <td>$name</td>\n".

 " <td>$salary</td>\n".

 " </tr>\n");

}

?>

</table>

 See also each() and array().

next (PHP3 , PHP4)

 Advance the internal array pointer of an array

mixed next (array array)

 Returns the array element in the next place that's pointed by the internal array pointer, or false if there are no more elements.

 Next() behaves like current(), with one difference. It advances the internal array pointer one place forward before returning the element. That means it returns the next array element and advances the internal array pointer by one. If advancing the internal array pointer results in going beyond the end of the element list, next() returns false.

Warning

 If the array contains empty elements, or elements that have a key value of 0 then this function will return false for these elements as well. To properly traverse an array which may contain empty elements or elements with key values of 0 see the each() function.

 See also: current(), end(), prev(), and reset().

pos (PHP3 , PHP4)

Get the current element from an array

mixed pos (array array)

 This is an alias for current().

 See also: end(), next(), prev() and reset().

prev (PHP3 , PHP4)

Rewind the internal array pointer

mixed prev (array array)

 Returns the array element in the previous place that's pointed by the internal array pointer, or false if there are no more elements.

Warning

 If the array contains empty elements then this function will return false for these elements as well. To properly traverse an array which may contain empty elements see the each() function.

 Prev() behaves just like next(), except it rewinds the internal array pointer one place instead of advancing it.

 See also: current(), end(), next(), and reset().

range (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

 Create an array containing a range of integers

array range (int low, int high)

 Range() returns an array of integers from low to high, inclusive.

 See shuffle() for an example of its use.

reset (PHP3 , PHP4)

 Set the internal pointer of an array to its first element

mixed reset (array array)

 Reset() rewinds array's internal pointer to the first element.

 Reset() returns the value of the first array element.

 See also: current(), each(), next(), prev(), and reset().

rsort (PHP3 , PHP4)

Sort an array in reverse order

void rsort (array array [, int sort_flags])

 This function sorts an array in reverse order (highest to lowest).

Example 1. Rsort() example

$fruits = array ("lemon", "orange", "banana", "apple");

rsort ($fruits);

reset ($fruits);

while (list ($key, $val) = each ($fruits)) {

 echo "$key -> $val\n";

}

 This example would display:

fruits[0] = orange

fruits[1] = lemon

fruits[2] = banana

fruits[3] = apple

 The fruits have been sorted in reverse alphabetical order.

 You may modify the behavior of the sort using the optional parameter sort_flags, for details see sort().

 See also: arsort(), asort(), ksort(), sort(), and usort().

shuffle (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Shuffle an array

void shuffle (array array)

 This function shuffles (randomizes the order of the elements in) an array.

Example 1. Shuffle() example

$numbers = range (1,20);

srand (time());

shuffle ($numbers);

while (list (, $number) = each ($numbers)) {

 echo "$number ";

}

 See also arsort(), asort(), ksort(), rsort(), sort() and usort().

sizeof (PHP3 , PHP4)

Get the number of elements in an array

int sizeof (array array)

 Returns the number of elements in the array.

 See also count().

sort (PHP3 , PHP4)

Sort an array

void sort (array array [, int sort_flags])

 This function sorts an array. Elements will be arranged from lowest to highest when this function has completed.

Example 1. Sort() example

$fruits = array ("lemon", "orange", "banana", "apple");

sort ($fruits);

reset ($fruits);

while (list ($key, $val) = each ($fruits)) {

 echo "$key -> $val\n";

}

 This example would display:

fruits[0] = apple

fruits[1] = banana

fruits[2] = lemon

fruits[3] = orange

 The fruits have been sorted in alphabetical order.

 The optional second parameter sort_flags may be used to modify the sorting behavior using theese valies:

 Sorting type flags:

•
SORT_REGULAR - compare items normally

•
SORT_NUMERIC - compare items numerically

•
SORT_STRING - compare items as strings

 See also: arsort(), asort(), ksort(), rsort(), and usort().

uasort (PHP3 >= 3.0.4, PHP4)

 Sort an array with a user-defined comparison function and maintain index association

void uasort (array array, function cmp_function)

 This function sorts an array such that array indices maintain their correlation with the array elements they are associated with. This is used mainly when sorting associative arrays where the actual element order is significant. The comparison function is user-defined.

Note: Please see usort() and uksort() for examples of user-defined comparison functions.

 See also: usort(), uksort(), sort(), asort(), arsort(), ksort() and rsort().

uksort (PHP3 >= 3.0.4, PHP4)

 Sort an array by keys using a user-defined comparison function

void uksort (array array, function cmp_function)

 This function will sort the keys of an array using a user-supplied comparison function. If the array you wish to sort needs to be sorted by some non-trivial criteria, you should use this function.

Example 1. Uksort() example

function cmp ($a, $b) {

 if ($a == $b) return 0;

 return ($a > $b) ? -1 : 1;

}

$a = array (4 => "four", 3 => "three", 20 => "twenty", 10 => "ten");

uksort ($a, "cmp");

while (list ($key, $value) = each ($a)) {

 echo "$key: $value\n";

}

 This example would display:

20: twenty

10: ten

4: four

3: three

 See also: usort(), uasort(), sort(), asort(), arsort(), ksort() and rsort().

usort (PHP3 >= 3.0.3, PHP4)

 Sort an array by values using a user-defined comparison function

void usort (array array, string cmp_function)

 This function will sort an array by its values using a user-supplied comparison function. If the array you wish to sort needs to be sorted by some non-trivial criteria, you should use this function.

 The comparison function must return an integer less than, equal to, or greater than zero if the first argument is considered to be respectively less than, equal to, or greater than the second. If two members compare as equal, their order in the sorted array is undefined.

Example 1. Usort() example

function cmp ($a, $b) {

 if ($a == $b) return 0;

 return ($a > $b) ? -1 : 1;

}

$a = array (3, 2, 5, 6, 1);

usort ($a, "cmp");

while (list ($key, $value) = each ($a)) {

 echo "$key: $value\n";

}

 This example would display:

0: 6

1: 5

2: 3

3: 2

4: 1

Note: Obviously in this trivial case the rsort() function would be more appropriate.

Example 2. Usort() example using mulit-dimensional array

function cmp ($a, $b) {

 return strcmp($a["fruit"],$b["fruit"]);

}

$fruits[0]["fruit"] = "lemons";

$fruits[1]["fruit"] = "apples";

$fruits[2]["fruit"] = "grapes";

usort($fruits, "cmp");

while (list ($key, $value) = each ($fruits)) {

 echo "\$fruits[$key]: " . $value["fruit"] . "\n";

}

 When sorting a multi-dimensional array, $a and $b contain references to the first index of the array.

 This example would display:

$fruits[0]: apples

$fruits[1]: grapes

$fruits[2]: lemons

Warning

 The underlying quicksort function in some C libraries (such as on Solaris systems) may cause PHP to crash if the comparison function does not return consistent values.

 See also: uasort(), uksort(), sort(), asort(), arsort(), ksort() and rsort().

III. Aspell functions

 The aspell() functions allows you to check the spelling on a word and offer suggestions.

Note: aspell works only with very old (up to .27.* or so) versions of aspell library. Neither this module, nor those versions of aspell library are supported any longer. If you want to use spell-checking capabilities in php, use pspell instead. It uses pspell library and works with newer versions of aspell.

 You need the aspell library, available from: http://aspell.sourceforge.net/.

aspell_new (PHP3 >= 3.0.7, PHP4)

Load a new dictionary

int aspell_new (string master, string personal)

 Aspell_new() opens up a new dictionary and returns the dictionary link identifier for use in other aspell functions.

Example 1. Aspell_new()

$aspell_link=aspell_new ("english");

aspell_check (PHP3 >= 3.0.7, PHP4)

Check a word

boolean aspell_check (int dictionary_link, string word)

 Aspell_check() checks the spelling of a word and returns true if the spelling is correct, false if not.

Example 1. Aspell_check()

$aspell_link=aspell_new ("english");

if (aspell_check ($aspell_link,"testt")) {

 echo "This is a valid spelling";

} else {

 echo "Sorry, wrong spelling";

}

aspell_check-raw (PHP3 >= 3.0.7, PHP4)

 Check a word without changing its case or trying to trim it

boolean aspell_check_raw (int dictionary_link, string word)

 Aspell_check_raw() checks the spelling of a word, without changing its case or trying to trim it in any way and returns true if the spelling is correct, false if not.

Example 1. Aspell_check_raw()

$aspell_link=aspell_new ("english");

if (aspell_check_raw ($aspell_link, "test")) {

 echo "This is a valid spelling";

} else {

 echo "Sorry, wrong spelling";

}

aspell_suggest (PHP3 >= 3.0.7, PHP4)

Suggest spellings of a word

array aspell_suggest (int dictionary_link, string word)

 Aspell_suggest() returns an array of possible spellings for the given word.

Example 1. Aspell_suggest()

$aspell_link=aspell_new ("english");

if (!aspell_check ($aspell_link, "test")) {

 $suggestions=aspell_suggest ($aspell_link, "test");

 for ($i=0; $i < count ($suggestions); $i++) {

 echo "Possible spelling: " . $suggestions[$i] . "
";

 }

}

IV. BCMath Arbitrary Precision Mathematics Functions

 These functions are only available if PHP was configured with --enable-bcmath.

bcadd (PHP3 , PHP4)

Add two arbitrary precision numbers

string bcadd (string left operand, string right operand [, int scale])

 Adds the left operand to the right operand and returns the sum in a string. The optional scale parameter is used to set the number of digits after the decimal place in the result.

 See also bcsub().

bccomp (PHP3 , PHP4)

Compare two arbitrary precision numbers

int bccomp (string left operand, string right operand [, int scale])

 Compares the left operand to the right operand and returns the result as an integer. The optional scale parameter is used to set the number of digits after the decimal place which will be used in the comparion. The return value is 0 if the two operands are equal. If the left operand is larger than the right operand the return value is +1 and if the left operand is less than the right operand the return value is -1.

bcdiv (PHP3 , PHP4)

Divide two arbitrary precision numbers

string bcdiv (string left operand, string right operand [, int scale])

 Divides the left operand by the right operand and returns the result. The optional scale sets the number of digits after the decimal place in the result.

 See also bcmul().

bcmod (PHP3 , PHP4)

 Get modulus of an arbitrary precision number

string bcmod (string left operand, string modulus)

 Get the modulus of the left operand using modulus.

 See also bcdiv().

bcmul (PHP3 , PHP4)

Multiply two arbitrary precision number

string bcmul (string left operand, string right operand [, int scale])

 Multiply the left operand by the right operand and returns the result. The optional scale sets the number of digits after the decimal place in the result.

 See also bcdiv().

bcpow (PHP3 , PHP4)

 Raise an arbitrary precision number to another

string bcpow (string x, string y [, int scale])

 Raise x to the power y. The optional scale can be used to set the number of digits after the decimal place in the result.

 See also bcsqrt().

bcscale (PHP3 , PHP4)

 Set default scale parameter for all bc math functions

string bcscale (int scale)

 This function sets the default scale parameter for all subsequent bc math functions that do not explicitly specify a scale parameter.

bcsqrt (PHP3 , PHP4)

 Get the square root of an arbitray precision number

string bcsqrt (string operand, int scale)

 Return the square root of the operand. The optional scale parameter sets the number of digits after the decimal place in the result.

 See also bcpow().

bcsub (PHP3 , PHP4)

 Subtract one arbitrary precision number from another

string bcsub (string left operand, string right operand [, int scale])

 Subtracts the right operand from the left operand and returns the result in a string. The optional scale parameter is used to set the number of digits after the decimal place in the result.

 See also bcadd().

V. Calendar functions

 The calendar functions are only available if you have compiled the calendar extension in dl/calendar. Read dl/README for instructions on using it.

 The calendar extension presents a series of functions to simplify converting between different calendar formats. The intermediary or standard it is based on is the Julian Day Count. The Julian Day Count is a count of days starting way earlier than any date most people would need to track (somewhere around 4000bc). To convert between calendar systems, you must first convert to Julian Day Count, then to the calendar system of your choice. Julian Day Count is very different from the Julian Calendar! For more information on calendar systems visit http://genealogy.org/~scottlee/cal-overview.html. Excerpts from this page are included in these instructions, and are in quotes.

JDToGregorian (PHP3 , PHP4)

Converts Julian Day Count to Gregorian date

string jdtogregorian (int julianday)

 Converts Julian Day Count to a string containing the Gregorian date in the format of "month/day/year".

GregorianToJD (PHP3 , PHP4)

 Converts a Gregorian date to Julian Day Count

int gregoriantojd (int month, int day, int year)

 Valid Range for Gregorian Calendar 4714 B.C. to 9999 A.D.

 Although this software can handle dates all the way back to 4714 B.C., such use may not be meaningful. The Gregorian calendar was not instituted until October 15, 1582 (or October 5, 1582 in the Julian calendar). Some countries did not accept it until much later. For example, Britain converted in 1752, The USSR in 1918 and Greece in 1923. Most European countries used the Julian calendar prior to the Gregorian.

Example 1. Calendar functions

<?php

$jd = GregorianToJD (10,11,1970);

echo "$jd\n";

$gregorian = JDToGregorian ($jd);

echo "$gregorian\n";

?>

JDToJulian (PHP3 , PHP4)

 Converts a Julian Day Count to a Julian Calendar Date

string jdtojulian (int julianday)

 Converts Julian Day Count to a string containing the Julian Calendar Date in the format of "month/day/year".

JulianToJD (PHP3 , PHP4)

 Converts a Julian Calendar date to Julian Day Count

int juliantojd (int month, int day, int year)

 Valid Range for Julian Calendar 4713 B.C. to 9999 A.D.

 Although this software can handle dates all the way back to 4713 B.C., such use may not be meaningful. The calendar was created in 46 B.C., but the details did not stabilize until at least 8 A.D., and perhaps as late at the 4th century. Also, the beginning of a year varied from one culture to another - not all accepted January as the first month.

JDToJewish (PHP3 , PHP4)

 Converts a Julian Day Count to the Jewish Calendar

string jdtojewish (int julianday)

 Converts a Julian Day Count the the Jewish Calendar.

JewishToJD (PHP3 , PHP4)

 Converts a date in the Jewish Calendar to Julian Day Count

int jewishtojd (int month, int day, int year)

 Valid Range Although this software can handle dates all the way back to the year 1 (3761 B.C.), such use may not be meaningful.

 The Jewish calendar has been in use for several thousand years, but in the early days there was no formula to determine the start of a month. A new month was started when the new moon was first observed.

JDToFrench (PHP3 , PHP4)

 Converts a Julian Day Count to the French Republican Calendar

string jdtofrench (int month, int day, int year)

 Converts a Julian Day Count to the French Republican Calendar.

FrenchToJD (PHP3 , PHP4)

 Converts a date from the French Republican Calendar to a Julian Day Count

int frenchtojd (int month, int day, int year)

 Converts a date from the French Republican Calendar to a Julian Day Count.

 These routines only convert dates in years 1 through 14 (Gregorian dates 22 September 1792 through 22 September 1806). This more than covers the period when the calendar was in use.

JDMonthName (PHP3 , PHP4)

Returns a month name

string jdmonthname (int julianday, int mode)

 Returns a string containing a month name. mode tells this function which calendar to convert the Julian Day Count to, and what type of month names are to be returned.

Table 1. Calendar modes

	Mode
	Meaning

	0
	Gregorian - abbreviated

	1
	Gregorian

	2
	Julian - abbreviated

	3
	Julian

	4
	Jewish

	5
	French Republican

JDDayOfWeek (PHP3 , PHP4)

Returns the day of the week

mixed jddayofweek (int julianday, int mode)

 Returns the day of the week. Can return a string or an int depending on the mode.

Table 1. Calendar week modes

	Mode
	Meaning

	0
	 Returns the day number as an int (0=sunday, 1=monday, etc)

	1
	 Returns string containing the day of week (english-gregorian)

	2
	 Returns a string containing the abbreviated day of week (english-gregorian)

easter_date (PHP3 >= 3.0.9, PHP4 >= 4.0RC2)

 Get UNIX timestamp for midnight on Easter of a given year

int easter_date (int year)

 Returns the UNIX timestamp corresponding to midnight on Easter of the given year. If no year is specified, the current year is assumed.

 Warning: This function will generate a warning if the year is outside of the range for UNIX timestamps (i.e. before 1970 or after 2037).

Example 1. easter_date() example

echo date ("M-d-Y", easter_date(1999)); /* "Apr-04-1999" */

echo date ("M-d-Y", easter_date(2000)); /* "Apr-23-2000" */

echo date ("M-d-Y", easter_date(2001)); /* "Apr-15-2001" */

 The date of Easter Day was defined by the Council of Nicaea in AD325 as the Sunday after the first full moon which falls on or after the Spring Equinox. The Equinox is assumed to always fall on 21st March, so the calculation reduces to determining the date of the full moon and the date of the following Sunday. The algorithm used here was introduced around the year 532 by Dionysius Exiguus. Under the Julian Calendar (for years before 1753) a simple 19-year cycle is used to track the phases of the Moon. Under the Gregorian Calendar (for years after 1753 - devised by Clavius and Lilius, and introduced by Pope Gregory XIII in October 1582, and into Britain and its then colonies in September 1752) two correction factors are added to make the cycle more accurate.

 (The code is based on a C program by Simon Kershaw, <webmaster@ely.anglican.org>)

 See easter_days() for calculating Easter before 1970 or after 2037.

easter_days (PHP3 >= 3.0.9, PHP4 >= 4.0RC2)

 Get number of days after March 21 on which Easter falls for a given year

int easter_days (int year)

 Returns the number of days after March 21 on which Easter falls for a given year. If no year is specified, the current year is assumed.

 This function can be used instead of easter_date() to calculate Easter for years which fall outside the range of UNIX timestamps (i.e. before 1970 or after 2037).

Example 1. Easter_date() example

echo easter_days (1999); /* 14, i.e. April 4 */

echo easter_days (1492); /* 32, i.e. April 22 */

echo easter_days (1913); /* 2, i.e. March 23 */

 The date of Easter Day was defined by the Council of Nicaea in AD325 as the Sunday after the first full moon which falls on or after the Spring Equinox. The Equinox is assumed to always fall on 21st March, so the calculation reduces to determining the date of the full moon and the date of the following Sunday. The algorithm used here was introduced around the year 532 by Dionysius Exiguus. Under the Julian Calendar (for years before 1753) a simple 19-year cycle is used to track the phases of the Moon. Under the Gregorian Calendar (for years after 1753 - devised by Clavius and Lilius, and introduced by Pope Gregory XIII in October 1582, and into Britain and its then colonies in September 1752) two correction factors are added to make the cycle more accurate.

 (The code is based on a C program by Simon Kershaw, <webmaster@ely.anglican.org>)

 See also easter_date().

unixtojd (PHP4 >= 4.0RC2)

Convert UNIX timestamp to Julian Day

int unixtojd ([int timestamp])

 Return the Julian Day for a UNIX timestamp (seconds since 1.1.1970), or for the current day if no timestamp is given.

 See also jdtounix().

Note: This function is only available in PHP versions after PHP4RC1.

jdtounix (PHP4 >= 4.0RC2)

Convert Julian Day to UNIX timestamp

int jdtounix (int jday)

 This function will return a UNIX timestamp corresponding to the Julian Day given in jday or false if jday is not inside the UNIX epoch (Gregorian years between 1970 and 2037 or 2440588 <= jday <= 2465342)

 See also jdtounix().

Note: This function is only available in PHP versions after PHP4RC1.

VI. CCVS API Functions

 These functions interface the CCVS API, allowing you to directly work with CCVS from your PHP scripts. CCVS is RedHat's (http://www.redhat.com/) solution to the "middle-man" in credit card processing. It lets you directly address the credit card clearing houses via your *nix box and a modem. Using the CCVS module for PHP, you can process credit cards directly through CCVS via your PHP Scripts. The following references will outline the process.

 To enable CCVS Support in PHP, first verify your CCVS installation directory. You will then need to configure PHP with the --with-ccvs option. If you use this option without specifying the path to your CCVS installation, PHP Will attempt to look in the default CCVS Install location (/usr/local/ccvs). If CCVS is in a non-standard location, run configure with: --with-ccvs=$ccvs_path, where $ccvs_path is the path to your CCVS installation. Please note that CCVS support requires that $ccvs_path/lib and $ccvs_path/include exist, and include cv_api.h under the include directory and libccvs.a under the lib directory.

 Additionally, a ccvsd process will need to be running for the configurations you intend to use in your PHP scripts. You will also need to make sure the PHP Processes are running under the same user as your CCVS was installed as (e.g. if you installed CCVS as user 'ccvs', your PHP processes must run as 'ccvs' as well.)

 Additional information about CCVS can be found at http://www.redhat.com/products/ccvs.

 This documentation section is being worked on. Until then, RedHat maintains slightly outdated but still useful documentation at http://www.redhat.com/products/ccvs/support/CCVS3.3docs/ProgPHP.html.

 (unknown)

 ()

VII. COM support functions for Windows

 These functions are only available on the Windows version of PHP. These functions have been added in PHP4.

com_load (PHP3 >= 3.0.3, PHP4)

???

string com_load (string module name [, string server name])

com_invoke (PHP3 >= 3.0.3, PHP4)

???

mixed com_invoke (resource object, string function_name [, mixed function parameters, ...])

com_propget (PHP3 >= 3.0.3, PHP4)

???

mixed com_propget (resource object, string property)

com_get (PHP3 >= 3.0.3, PHP4)

???

mixed com_get (resource object, string property)

com_propput (PHP3 >= 3.0.3, PHP4)

???

void com_propput (resource object, string property, mixed value)

com_propset (PHP3 >= 3.0.3, PHP4)

???

void com_propset (resource object, string property, mixed value)

 This function is an alias for com_propput().

com_set (PHP3 >= 3.0.3, PHP4)

???

void com_set (resource object, string property, mixed value)

 This function is an alias for com_set().

VIII. Class/Object Functions

Introduction

About

 These functions allow you to obtain information about classes and instance objects. You can obtain the name of the class to which a object belongs, as well as its member properties and methods. Using these functions, you can find out not only the class membership of an object, but also its parentage (i.e. what class is the object class extending).

An example of use

 In this example, we first define a base class and an extension of the class. The base class describes a general vegetable, whether it is edible or not and what is its color. The subclass Spinach adds a method to cook it and another to find out if it is cooked.

Example 1. classes.inc

<?php

// base class with member properties and methods

class Vegetable {

 var $edible;

 var $color;

 function Vegetable($edible, $color="green") {

 $this->edible = $edible;

 $this->color = $color;

 }

 function is_edible() {

 return $this->edible;

 }

 function what_color() {

 return $this->color;

 }

} // end of class Vegetable

// extends the base class

class Spinach extends Vegetable {

 var $cooked = false;

 function Spinach() {

 $this->Vegetable(true, "green");

 }

 function cook_it() {

 $this->cooked = true;

 }

 function is_cooked() {

 return $this->cooked;

 }

} // end of class Spinach

?>

 We then instantiate 2 objects from these classes and print out information about them, including their class parentage. We also define some utility functions, mainly to have a nice printout of the variables.

Example 2. test_script.php

<pre>

<?php

include "classes.inc";

// utility functions

function print_vars($obj) {

 $arr = get_object_vars($obj);

 while (list($prop, $val) = each($arr))

 echo "\t$prop = $val\n";

}

function print_methods($obj) {

 $arr = get_class_methods(get_class($obj));

 foreach ($arr as $method)

 echo "\tfunction $method()\n";

}

function class_parentage($obj, $class) {

 global $$obj;

 if (is_subclass_of($$obj, $class)) {

 echo "Object $obj belongs to class ".get_class($$obj);

 echo " a subclass of $class\n";

 } else {

 echo "Object $obj does not belong to a subclass of $class\n";

 }

}

// instantiate 2 objects

$veggie = new Vegetable(true,"blue");

$leafy = new Spinach();

// print out information about objects

echo "veggie: CLASS ".get_class($veggie)."\n";

echo "leafy: CLASS ".get_class($leafy);

echo ", PARENT ".get_parent_class($leafy)."\n";

// show veggie properties

echo "\nveggie: Properties\n";

print_vars($veggie);

// and leafy methods

echo "\nleafy: Methods\n";

print_methods($leafy);

echo "\nParentage:\n";

class_parentage("leafy", "Spinach");

class_parentage("leafy", "Vegetable");

?>

</pre>

 One important thing to note in the example above is that the object $leafy is an instance of the class Spinach which is a subclass of Vegetable, therefore the last part of the script above will output:

 [...]

Parentage:

Object leafy does not belong to a subclass of Spinach

Object leafy belongs to class spinach a subclass of Vegetable

get_class (PHP4 >= 4.0b2)

Returns the name of the class of an object

string get_class (object obj)

 This function returns the name of the class of which the object obj is an instance.

 See also get_parent_class(), is_subclass_of()

get_parent_class (PHP4 >= 4.0b2)

Returns the name of the parent class of an object

string get_parent_class (object obj)

 This function returns the name of the parent class to the class of which the object obj is an instance.

 See also get_class(), is_subclass_of()

get_class_methods (PHP4 >= 4.0RC1)

Returns an array of class methods' names

array get_class_methods (string class_name)

 This function returns an array of method names defined for the class specified by class_name.

 See also get_class_vars(), get_object_vars()

get_class_vars (PHP4 >= 4.0RC1)

 Returns an array of default properties of the class

array get_class_vars (string class_name)

 This function will return an array of default properties of the class.

 See also get_class_methods(), get_object_vars()

get_object_vars (PHP4 >= 4.0RC1)

Returns an associative array of object properties

array get_object_vars (object obj)

 This function returns an associative array of object properties for the specified object obj.

 See also get_class_methods(), get_class_vars()

is_subclass_of (PHP4 >= 4.0b4)

 Determines if an object belongs to a subclass of the specified class

bool is_subclass_of (object obj, string superclass)

 This function returns true if the object obj, belongs to a class which is a subclass of superclass, false otherwise.

 See also get_class(), get_parent_class()

class_exists (PHP4 >= 4.0b4)

Checks if the class has been defined

bool class_exists (string class_name)

 This function returns true if the class given by class_name has been defined, false otherwise.

method_exists (PHP4 >= 4.0b2)

Checks if the class method exists

bool method_exists (object object, string method_name)

 This function returns true if the method given by method_name has been defined for the given object, false otherwise.

get_declared_classes (PHP4 >= 4.0RC2)

Returns an array with the name of the defined classes

array get_declared_classes (void)

 This function returns an array of the names of the declared classes in the current script.

Note: In PHP 4.0.1pl2, three extra classes are returned at the beginning of the array: stdClass (defined in Zend/zend.c), OverloadedTestClass (defined in ext/standard/basic_functions.c) and Directory (defined in ext/standard/dir.c).

call_user_method (PHP3 >= 3.0.3, PHP4)

 Call a user method on an specific object

mixed call_user_method (string method_name, object obj [, mixed parameter [, mixed ...]])

 Calls a the method referred by method_name from the user defined obj object. An example of usage is below, where we define a class, instantiate an object and use call_user_method() to call indirectly its print_info method.

<?php

class Country {

 var $NAME;

 var $TLD;

 function Country($name, $tld) {

 $this->NAME = $name;

 $this->TLD = $tld;

 }

 function print_info($prestr="") {

 echo $prestr."Country: ".$this->NAME."\n";

 echo $prestr."Top Level Domain: ".$this->TLD."\n";

 }

}

$cntry = new Country("Peru","pe");

echo "* Calling the object method directly\n";

$cntry->print_info();

echo "\n* Calling the same method indirectly\n";

call_user_method ("print_info", $cntry, "\t");

?>

 See also call_user_func().

IX. ClibPDF functions

 ClibPDF lets you create PDF documents with PHP. It is available at FastIO (http://www.fastio.com/) but it isn't free software. You should definitely read the licence before you start playing with ClibPDF. If you cannot fullfil the licence agreement consider using pdflib by Thomas Merz, which is also very powerful. ClibPDF functionality and API is similar to Thomas Merz's pdflib but, according to FastIO, ClibPDF is faster and creates smaller documents. This may have changed with the new version 2.0 of pdflib. A simple benchmark (the pdfclock.c example from pdflib 2.0 turned into a php script) actually shows no difference in speed at all. The file size is also similar if compression is turned off. So, try them both and see which one does the job for you.

 This documentation should be read alongside the ClibPDF manual since it explains the library in much greater detail.

 Many functions in the native ClibPDF and the PHP module, as well as in pdflib, have the same name. All functions except for cpdf_open() take the handle for the document as their first parameter. Currently this handle is not used internally since ClibPDF does not support the creation of several PDF documents at the same time. Actually, you should not even try it, the results are unpredictable. I can't oversee what the consequences in a multi threaded environment are. According to the author of ClibPDF this will change in one of the next releases (current version when this was written is 1.10). If you need this functionality use the pdflib module.

Note: The function cpdf_set_font() has changed since PHP3 to support asian fonts. The encoding parameter is no longer an integer but a string.

 One big advantage of ClibPDF over pdflib is the possibility to create the pdf document completely in memory without using temporary files. It also provides the ability to pass coordinates in a predefined unit length. This is a handy feature but can be simulated with pdf_translate().

 Most of the functions are fairly easy to use. The most difficult part is probably creating a very simple PDF document at all. The following example should help you get started. It creates a document with one page. The page contains the text "Times-Roman" in an outlined 30pt font. The text is underlined.

Example 1. Simple ClibPDF Example

<?php

$cpdf = cpdf_open(0);

cpdf_page_init($cpdf, 1, 0, 595, 842);

cpdf_add_outline($cpdf, 0, 0, 0, 1, "Page 1");

cpdf_begin_text($pdf);

cpdf_set_font($cpdf, "Times-Roman", 30, "WinAnsiEncoding");

cpdf_set_text_rendering($cpdf, 1);

cpdf_text($cpdf, "Times Roman outlined", 50, 750);

cpdf_end_text($pdf);

cpdf_moveto($cpdf, 50, 740);

cpdf_lineto($cpdf, 330, 740);

cpdf_stroke($cpdf);

cpdf_finalize($cpdf);

Header("Content-type: application/pdf");

cpdf_output_buffer($cpdf);

cpdf_close($cpdf);

?>

 The pdflib distribution contains a more complex example which creates a series of pages with an analog clock. Here is that example converted into PHP using the ClibPDF extension:

Example 2. pdfclock example from pdflib 2.0 distribution

<?php

$radius = 200;

$margin = 20;

$pagecount = 40;

$pdf = cpdf_open(0);

cpdf_set_creator($pdf, "pdf_clock.php3");

cpdf_set_title($pdf, "Analog Clock");

while($pagecount-- > 0) {

 cpdf_page_init($pdf, $pagecount+1, 0, 2 * ($radius + $margin), 2 * ($radius + $margin), 1.0);

 cpdf_set_page_animation($pdf, 4, 0.5, 0, 0, 0); /* wipe */

 cpdf_translate($pdf, $radius + $margin, $radius + $margin);

 cpdf_save($pdf);

 cpdf_setrgbcolor($pdf, 0.0, 0.0, 1.0);

 /* minute strokes */

 cpdf_setlinewidth($pdf, 2.0);

 for ($alpha = 0; $alpha < 360; $alpha += 6)

 {

 cpdf_rotate($pdf, 6.0);

 cpdf_moveto($pdf, $radius, 0.0);

 cpdf_lineto($pdf, $radius-$margin/3, 0.0);

 cpdf_stroke($pdf);

 }

 cpdf_restore($pdf);

 cpdf_save($pdf);

 /* 5 minute strokes */

 cpdf_setlinewidth($pdf, 3.0);

 for ($alpha = 0; $alpha < 360; $alpha += 30)

 {

 cpdf_rotate($pdf, 30.0);

 cpdf_moveto($pdf, $radius, 0.0);

 cpdf_lineto($pdf, $radius-$margin, 0.0);

 cpdf_stroke($pdf);

 }

 $ltime = getdate();

 /* draw hour hand */

 cpdf_save($pdf);

 cpdf_rotate($pdf, -(($ltime['minutes']/60.0) + $ltime['hours'] - 3.0) * 30.0);

 cpdf_moveto($pdf, -$radius/10, -$radius/20);

 cpdf_lineto($pdf, $radius/2, 0.0);

 cpdf_lineto($pdf, -$radius/10, $radius/20);

 cpdf_closepath($pdf);

 cpdf_fill($pdf);

 cpdf_restore($pdf);

 /* draw minute hand */

 cpdf_save($pdf);

 cpdf_rotate($pdf, -(($ltime['seconds']/60.0) + $ltime['minutes'] - 15.0) * 6.0);

 cpdf_moveto($pdf, -$radius/10, -$radius/20);

 cpdf_lineto($pdf, $radius * 0.8, 0.0);

 cpdf_lineto($pdf, -$radius/10, $radius/20);

 cpdf_closepath($pdf);

 cpdf_fill($pdf);

 cpdf_restore($pdf);

 /* draw second hand */

 cpdf_setrgbcolor($pdf, 1.0, 0.0, 0.0);

 cpdf_setlinewidth($pdf, 2);

 cpdf_save($pdf);

 cpdf_rotate($pdf, -(($ltime['seconds'] - 15.0) * 6.0));

 cpdf_moveto($pdf, -$radius/5, 0.0);

 cpdf_lineto($pdf, $radius, 0.0);

 cpdf_stroke($pdf);

 cpdf_restore($pdf);

 /* draw little circle at center */

 cpdf_circle($pdf, 0, 0, $radius/30);

 cpdf_fill($pdf);

 cpdf_restore($pdf);

 cpdf_finalize_page($pdf, $pagecount+1);

}

cpdf_finalize($pdf);

Header("Content-type: application/pdf");

cpdf_output_buffer($pdf);

cpdf_close($pdf);

?>

cpdf_global_set_document_limits (PHP4 >= 4.0b4)

Sets document limits for any pdf document

void cpdf_global_set_document_limits (int maxpages, int maxfonts, int maximages, int maxannotations, int maxobjects)

 The cpdf_global_set_document_limits() function sets several document limits. This function has to be called before cpdf_open() to take effect. It sets the limits for any document open afterwards.

 See also cpdf_open().

cpdf_set_creator (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets the creator field in the pdf document

void cpdf_set_creator (string creator)

 The cpdf_set_creator() function sets the creator of a pdf document.

 See also cpdf_set_subject(), cpdf_set_title(), cpdf_set_keywords().

cpdf_set_title (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets the title field of the pdf document

void cpdf_set_title (string title)

 The cpdf_set_title() function sets the title of a pdf document.

 See also cpdf_set_subject(), cpdf_set_creator(), cpdf_set_keywords().

cpdf_set_subject (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets the subject field of the pdf document

void cpdf_set_subject (string subject)

 The cpdf_set_subject() function sets the subject of a pdf document.

 See also cpdf_set_title(), cpdf_set_creator(), cpdf_set_keywords().

cpdf_set_keywords (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets the keywords field of the pdf document

void cpdf_set_keywords (string keywords)

 The cpdf_set_keywords() function sets the keywords of a pdf document.

 See also cpdf_set_title(), cpdf_set_creator(), cpdf_set_subject().

cpdf_open (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Opens a new pdf document

int cpdf_open (int compression, string filename)

 The cpdf_open() function opens a new pdf document. The first parameter turns document compression on if it is unequal to 0. The second optional parameter sets the file in which the document is written. If it is omitted the document is created in memory and can either be written into a file with the cpdf_save_to_file() or written to standard output with cpdf_output_buffer().

Note: The return value will be needed in futher versions of ClibPDF as the first parameter in all other functions which are writing to the pdf document.

The ClibPDF library takes the filename "-" as a synonym for stdout. If PHP is compiled as an apache module this will not work because the way ClibPDF outputs to stdout does not work with apache. You can solve this problem by skipping the filename and using cpdf_output_buffer() to output the pdf document.

 See also cpdf_close(), cpdf_output_buffer().

cpdf_close (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Closes the pdf document

void cpdf_close (int pdf document)

 The cpdf_close() function closes the pdf document. This should be the last function even after cpdf_finalize(), cpdf_output_buffer() and cpdf_save_to_file().

 See also cpdf_open().

cpdf_page_init (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Starts new page

void cpdf_page_init (int pdf document, int page number, int orientation, double height, double width, double unit)

 The cpdf_page_init() function starts a new page with height height and width width. The page has number page number and orientation orientation. orientation can be 0 for portrait and 1 for landscape. The last optional parameter unit sets the unit for the koordinate system. The value should be the number of postscript points per unit. Since one inch is equal to 72 points, a value of 72 would set the unit to one inch. The default is also 72.

 See also cpdf_set_current_page().

cpdf_finalize_page (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

Ends page

void cpdf_finalize_page (int pdf document, int page number)

 The cpdf_finalize_page() function ends the page with page number page number. This function is only for saving memory. A finalized page takes less memory but cannot be modified anymore.

 See also cpdf_page_init().

cpdf_finalize (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Ends document

void cpdf_finalize (int pdf document)

 The cpdf_finalize() function ends the document. You still have to call cpdf_close().

 See also cpdf_close().

cpdf_output_buffer (PHP3 >= 3.0.9, PHP4 >= 4.0b4)

Outputs the pdf document in memory buffer

void cpdf_output_buffer (int pdf document)

 The cpdf_output_buffer() function outputs the pdf document to stdout. The document has to be created in memory which is the case if cpdf_open() has been called with no filename parameter.

 See also cpdf_open().

cpdf_save_to_file (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Writes the pdf document into a file

void cpdf_save_to_file (int pdf document, string filename)

 The cpdf_save_to_file() function outputs the pdf document into a file if it has been created in memory. This function is not needed if the pdf document has been open by specifying a filename as a parameter of cpdf_open().

 See also cpdf_output_buffer(), cpdf_open().

cpdf_set_current_page (PHP3 >= 3.0.9, PHP4 >= 4.0b4)

Sets current page

void cpdf_set_current_page (int pdf document, int page number)

 The cpdf_set_current_page() function set the page on which all operations are performed. One can switch between pages until a page is finished with cpdf_finalize_page().

 See also cpdf_finalize_page().

cpdf_begin_text (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Starts text section

void cpdf_begin_text (int pdf document)

 The cpdf_begin_text() function starts a text section. It must be ended with cpdf_end_text().

Example 1. Text output

<?php cpdf_begin_text($pdf);

cpdf_set_font($pdf, 16, "Helvetica", "WinAnsiEncoding");

cpdf_text($pdf, 100, 100, "Some text");

cpdf_end_text($pdf) ?>

 See also cpdf_end_text().

cpdf_end_text (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Ends text section

void cpdf_end_text (int pdf document)

 The cpdf_end_text() function ends a text section which was started with cpdf_begin_text().

Example 1. Text output

<?php cpdf_begin_text($pdf);

cpdf_set_font($pdf, 16, "Helvetica", "WinAnsiEncoding");

cpdf_text($pdf, 100, 100, "Some text");

cpdf_end_text($pdf) ?>

 See also cpdf_begin_text().

cpdf_show (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Output text at current position

void cpdf_show (int pdf document, string text)

 The cpdf_show() function outputs the string in text at the current position.

 See also cpdf_text(), cpdf_begin_text(), cpdf_end_text().

cpdf_show_xy (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Output text at position

void cpdf_show_xy (int pdf document, string text, double x-koor, double y-koor, int mode)

 The cpdf_show_xy() function outputs the string text at position with coordinates (x-koor, y-koor). The last optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

Note: The function cpdf_show_xy() is identical to cpdf_text() without the optional parameters.

 See also cpdf_text().

cpdf_text (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Output text with parameters

void cpdf_text (int pdf document, string text, double x-koor, double y-koor, int mode, double orientation, int alignmode)

 The cpdf_text() function outputs the string text at position with coordinates (x-koor, y-koor). The optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit. The optional parameter orientation is the rotation of the text in degree. The optional parameter alignmode determines how the text is align. See the ClibPDF documentation for possible values.

 See also cpdf_show_xy().

cpdf_set_font (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Select the current font face and size

void cpdf_set_font (int pdf document, string font name, double size, string encoding)

 The cpdf_set_font() function sets the the current font face, font size and encoding. Currently only the standard postscript fonts are supported. The last parameter encoding can take the following values: "MacRomanEncoding", "MacExpertEncoding", "WinAnsiEncoding", and "NULL". "NULL" stands for the font's built-in encoding. See the ClibPDF Manual for more information, especially how to support asian fonts.

cpdf_set_leading (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets distance between text lines

void cpdf_set leading (int pdf document, double distance)

 The cpdf_set_leading() function sets the distance between text lines. This will be used if text is output by cpdf_continue_text().

 See also cpdf_continue_text().

cpdf_set_text_rendering (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Determines how text is rendered

void cpdf_set_text_rendering (int pdf document, int mode)

 The cpdf_set_text_rendering() function determines how text is rendered. The possible values for mode are 0=fill text, 1=stroke text, 2=fill and stroke text, 3=invisible, 4=fill text and add it to cliping path, 5=stroke text and add it to clipping path, 6=fill and stroke text and add it to cliping path, 7=add it to clipping path.

cpdf_set_horiz_scaling (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets horizontal scaling of text

void cpdf_set_horiz_scaling (int pdf document, double scale)

 The cpdf_set_horiz_scaling() function sets the horizontal scaling to scale percent.

cpdf_set_text_rise (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets the text rise

void cpdf_set_text_rise (int pdf document, double value)

 The cpdf_set_text_rise() function sets the text rising to value units.

cpdf_set_text_matrix (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets the text matrix

void cpdf_set_text_matrix (int pdf document, array matrix)

 The cpdf_set_text_matrix() function sets a matrix which describes a transformation applied on the current text font.

cpdf_set_text_pos (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets text position

void cpdf_set_text_pos (int pdf document, double x-koor, double y-koor, int mode)

 The cpdf_set_text_pos() function sets the position of text for the next cpdf_show() function call.

 The last optional parameter mode determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

 See also cpdf_show(), cpdf_text().

cpdf_set_char_spacing (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets character spacing

void cpdf_set_char_spacing (int pdf document, double space)

 The cpdf_set_char_spacing() function sets the spacing between characters.

 See also cpdf_set_word_spacing(), cpdf_set_leading().

cpdf_set_word_spacing (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets spacing between words

void cpdf_set_word_spacing (int pdf document, double space)

 The cpdf_set_word_spacing() function sets the spacing between words.

 See also cpdf_set_char_spacing(), cpdf_set_leading().

cpdf_continue_text (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Output text in next line

void cpdf_continue_text (int pdf document, string text)

 The cpdf_continue_text() function outputs the string in text in the next line.

 See also cpdf_show_xy(), cpdf_text(), cpdf_set_leading(), cpdf_set_text_pos().

cpdf_stringwidth (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Returns width of text in current font

double cpdf_stringwidth (int pdf document, string text)

 The cpdf_stringwidth() function returns the width of the string in text. It requires a font to be set before.

 See also cpdf_set_font().

cpdf_save (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Saves current enviroment

void cpdf_save (int pdf document)

 The cpdf_save() function saves the current enviroment. It works like the postscript command gsave. Very useful if you want to translate or rotate an object without effecting other objects.

 See also cpdf_restore().

cpdf_restore (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Restores formerly saved enviroment

void cpdf_restore (int pdf document)

 The cpdf_restore() function restores the enviroment saved with cpdf_save(). It works like the postscript command grestore. Very useful if you want to translate or rotate an object without effecting other objects.

Example 1. Save/Restore

<?php cpdf_save($pdf);

// do all kinds of rotations, transformations, ...

cpdf_restore($pdf) ?>

 See also cpdf_save().

cpdf_translate (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets origin of coordinate system

void cpdf_translate (int pdf document, double x-koor, double y-koor, int mode)

 The cpdf_translate() function set the origin of coordinate system to the point (x-koor, y-koor).

 The last optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

cpdf_scale (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets scaling

void cpdf_scale (int pdf document, double x-scale, double y-scale)

 The cpdf_scale() function set the scaling factor in both directions.

cpdf_rotate (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets rotation

void cpdf_rotate (int pdf document, double angle)

 The cpdf_rotate() function set the rotation in degress to angle.

cpdf_setflat (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets flatness

void cpdf_setflat (int pdf document, double value)

 The cpdf_setflat() function set the flatness to a value between 0 and 100.

cpdf_setlinejoin (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets linejoin parameter

void cpdf_setlinejoin (int pdf document, long value)

 The cpdf_setlinejoin() function set the linejoin parameter between a value of 0 and 2. 0 = miter, 1 = round, 2 = bevel.

cpdf_setlinecap (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets linecap aparameter

void cpdf_setlinecap (int pdf document, int value)

 The cpdf_setlinecap() function set the linecap parameter between a value of 0 and 2. 0 = butt end, 1 = round, 2 = projecting square.

cpdf_setmiterlimit (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets miter limit

void cpdf_setmiterlimit (int pdf document, double value)

 The cpdf_setmiterlimit() function set the miter limit to a value greater or equal than 1.

cpdf_setlinewidth (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets line width

void cpdf_setlinewidth (int pdf document, double width)

 The cpdf_setlinewidth() function set the line width to width.

cpdf_setdash (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets dash pattern

void cpdf_setdash (int pdf document, double white, double black)

 The cpdf_setdash() function set the dash pattern white white units and black black units. If both are 0 a solid line is set.

cpdf_newpath (PHP3 >= 3.0.9, PHP4 >= 4.0b4)

 Starts a new path

void cpdf_newpath (int pdf_document)

 The cpdf_newpath() starts a new path on the document given by the pdf_document parameter.

cpdf_moveto (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets current point

void cpdf_moveto (int pdf document, double x-koor, double y-koor, int mode)

 The cpdf_moveto() function set the current point to the coordinates x-koor and y-koor.

 The last optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

cpdf_rmoveto (PHP3 >= 3.0.9, PHP4 >= 4.0b4)

Sets current point

void cpdf_rmoveto (int pdf document, double x-koor, double y-koor, int mode)

 The cpdf_rmoveto() function set the current point relative to the coordinates x-koor and y-koor.

 The last optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

 See also cpdf_moveto().

cpdf_curveto (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Draws a curve

void cpdf_curveto (int pdf document, double x1, double y1, double x2, double y2, double x3, double y3, int mode)

 The cpdf_curveto() function draws a Bezier curve from the current point to the point (x3, y3) using (x1, y1) and (x2, y2) as control points.

 The last optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

 See also cpdf_moveto(), cpdf_rmoveto(), cpdf_rlineto(), cpdf_lineto().

cpdf_lineto (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Draws a line

void cpdf_lineto (int pdf document, double x-koor, double y-koor, int mode)

 The cpdf_lineto() function draws a line from the current point to the point with coordinates (x-koor, y-koor).

 The last optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

 See also cpdf_moveto(), cpdf_rmoveto(), cpdf_curveto().

cpdf_rlineto (PHP3 >= 3.0.9, PHP4 >= 4.0b4)

Draws a line

void cpdf_rlineto (int pdf document, double x-koor, double y-koor, int mode)

 The cpdf_rlineto() function draws a line from the current point to the relative point with coordinates (x-koor, y-koor).

 The last optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

 See also cpdf_moveto(), cpdf_rmoveto(), cpdf_curveto().

cpdf_circle (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Draw a circle

void cpdf_circle (int pdf document, double x-koor, double y-koor, double radius, int mode)

 The cpdf_circle() function draws a circle with center at point (x-koor, y-koor) and radius radius.

 The last optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

 See also cpdf_arc().

cpdf_arc (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Draws an arc

void cpdf_arc (int pdf document, double x-koor, double y-koor, double radius, double start, double end, int mode)

 The cpdf_arc() function draws an arc with center at point (x-koor, y-koor) and radius radius, starting at angle start and ending at angle end.

 The last optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

 See also cpdf_circle().

cpdf_rect (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Draw a rectangle

void cpdf_rect (int pdf document, double x-koor, double y-koor, double width, double height, int mode)

 The cpdf_rect() function draws a rectangle with its lower left corner at point (x-koor, y-koor). This width is set to widgth. This height is set to height.

 The last optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

cpdf_closepath (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Close path

void cpdf_closepath (int pdf document)

 The cpdf_closepath() function closes the current path.

cpdf_stroke (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Draw line along path

void cpdf_stroke (int pdf document)

 The cpdf_stroke() function draws a line along current path.

 See also cpdf_closepath(), cpdf_closepath_stroke().

cpdf_closepath_stroke (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Close path and draw line along path

void cpdf_closepath_stroke (int pdf document)

 The cpdf_closepath_stroke() function is a combination of cpdf_closepath() and cpdf_stroke(). Than clears the path.

 See also cpdf_closepath(), cpdf_stroke().

cpdf_fill (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Fill current path

void cpdf_fill (int pdf document)

 The cpdf_fill() function fills the interior of the current path with the current fill color.

 See also cpdf_closepath(), cpdf_stroke(), cpdf_setgray_fill(), cpdf_setgray(), cpdf_setrgbcolor_fill(), cpdf_setrgbcolor().

cpdf_fill_stroke (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Fill and stroke current path

void cpdf_fill_stroke (int pdf document)

 The cpdf_fill_stroke() function fills the interior of the current path with the current fill color and draws current path.

 See also cpdf_closepath(), cpdf_stroke(), cpdf_fill(), cpdf_setgray_fill(), cpdf_setgray(), cpdf_setrgbcolor_fill(), cpdf_setrgbcolor().

cpdf_closepath_fill_stroke (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Close, fill and stroke current path

void cpdf_closepath_fill_stroke (int pdf document)

 The cpdf_closepath_fill_stroke() function closes, fills the interior of the current path with the current fill color and draws current path.

 See also cpdf_closepath(), cpdf_stroke(), cpdf_fill(), cpdf_setgray_fill(), cpdf_setgray(), cpdf_setrgbcolor_fill(), cpdf_setrgbcolor().

cpdf_clip (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Clips to current path

void cpdf_clip (int pdf document)

 The cpdf_clip() function clips all drawing to the current path.

cpdf_setgray_fill (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets filling color to gray value

void cpdf_setgray_fill (int pdf document, double value)

 The cpdf_setgray_fill() function sets the current gray value to fill a path.

 See also cpdf_setrgbcolor_fill().

cpdf_setgray_stroke (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets drawing color to gray value

void cpdf_setgray_stroke (int pdf document, double gray value)

 The cpdf_setgray_stroke() function sets the current drawing color to the given gray value.

 See also cpdf_setrgbcolor_stroke().

cpdf_setgray (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets drawing and filling color to gray value

void cpdf_setgray (int pdf document, double gray value)

 The cpdf_setgray_stroke() function sets the current drawing and filling color to the given gray value.

 See also cpdf_setrgbcolor_stroke(), cpdf_setrgbcolor_fill().

cpdf_setrgbcolor_fill (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets filling color to rgb color value

void cpdf_setrgbcolor_fill (int pdf document, double red value, double green value, double blue value)

 The cpdf_setrgbcolor_fill() function sets the current rgb color value to fill a path.

 See also cpdf_setrgbcolor_stroke(), cpdf_setrgbcolor().

cpdf_setrgbcolor_stroke (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets drawing color to rgb color value

void cpdf_setrgbcolor_stroke (int pdf document, double red value, double green value, double blue value)

 The cpdf_setrgbcolor_stroke() function sets the current drawing color to the given rgb color value.

 See also cpdf_setrgbcolor_fill(), cpdf_setrgbcolor().

cpdf_setrgbcolor (PHP3 >= 3.0.8, PHP4 >= 4.0b4)

Sets drawing and filling color to rgb color value

void cpdf_setrgbcolor (int pdf document, double red value, double green value, double blue value)

 The cpdf_setrgbcolor_stroke() function sets the current drawing and filling color to the given rgb color value.

 See also cpdf_setrgbcolor_stroke(), cpdf_setrgbcolor_fill().

cpdf_add_outline (PHP3 >= 3.0.9, PHP4 >= 4.0b4)

Adds bookmark for current page

void cpdf_add_outline (int pdf document, string text)

 The cpdf_add_outline() function adds a bookmark with text text that points to the current page.

Example 1. Adding a page outline

<?php

$cpdf = cpdf_open(0);

cpdf_page_init($cpdf, 1, 0, 595, 842);

cpdf_add_outline($cpdf, 0, 0, 0, 1, "Page 1");

// ...

// some drawing

// ...

cpdf_finalize($cpdf);

Header("Content-type: application/pdf");

cpdf_output_buffer($cpdf);

cpdf_close($cpdf);

?>

cpdf_set_page_animation (PHP3 >= 3.0.9, PHP4 >= 4.0b4)

Sets duration between pages

void cpdf_set_page_animation (int pdf document, int transition, double duration)

 The cpdf_set_page_animation() function set the transition between following pages.

 The value of transition can be

	 0 for none,

	 1 for two lines sweeping across the screen reveal the page,

	 2 for multiple lines sweeping across the screen reveal the page,

	 3 for a box reveals the page,

	 4 for a single line sweeping across the screen reveals the page,

	 5 for the old page dissolves to reveal the page,

	 6 for the dissolve effect moves from one screen edge to another,

	 7 for the old page is simply replaced by the new page (default)

 The value of duration is the number of seconds between page flipping.

cpdf_import_jpeg (PHP3 >= 3.0.9, PHP4 >= 4.0b4)

Opens a JPEG image

int cpdf_open_jpeg (int pdf document, string file name, double x-koor, double y-koor, double angle, double width, double height, double x-scale, double y-scale, int mode)

 The cpdf_import_jpeg() function opens an image stored in the file with the name file name. The format of the image has to be jpeg. The image is placed on the current page at position (x-koor, y-koor). The image is rotated by angle degres.

 The last optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

 See also cpdf_place_inline_image(),

cpdf_place_inline_image (PHP3 >= 3.0.9, PHP4 >= 4.0b4)

Places an image on the page

void cpdf_place_inline_image (int pdf document, int image, double x-koor, double y-koor, double angle, double width, double height, int mode)

 The cpdf_place_inline_image() function places an image created with the php image functions on the page at postion (x-koor, y-koor). The image can be scaled at the same time.

 The last optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

 See also cpdf_import_jpeg(),

cpdf_add_annotation (PHP3 >= 3.0.12, PHP4 >= 4.0b4)

Adds annotation

void cpdf_add_annotation (int pdf document, double llx, double lly, double urx, double ury, string title, string content, int mode)

 The cpdf_add_annotation() adds a note with the lower left corner at (llx, lly) and the upper right corner at (urx, ury).

 The last optional parameter determines the unit length. If is 0 or omitted the default unit as specified for the page is used. Otherwise the koodinates are measured in postscript points disregarding the current unit.

X. CURL, Client URL Library Functions

 PHP supports libcurl, a library, created by Daniel Stenberg, that allows you to connect and communicate to many different types of servers with many different types of protocols. libcurl currently supports the http, https, ftp, gopher, telnet, dict, file, and ldap protocols. libcurl also supports HTTPS certificates, HTTP POST, HTTP PUT, FTP uploading (this can also be done with PHP's ftp extension), HTTP form based upload, proxies, cookies and user+password authentication.

 In order to use the CURL functions you need to install the CURL (http://curl.haxx.se/) package. PHP requires that you use CURL 7.0.2-beta or higher. PHP will not work with any version of CURL below version 7.0.2-beta.

 To use PHP's CURL support you must also compile PHP --with-curl[=DIR] where DIR is the location of the directory containing the lib and include directories. In the "include" directory there should be a folder named "curl" which should contain the easy.h and curl.h files. There should be a file named "libcurl.a" located in the "lib" directory.

 These functions have been added in PHP 4.0.2.

 Once you've compiled PHP with CURL support, you can begin using the curl functions. The basic idea behind the CURL functions is that you initialize a CURL session using the curl_init(), then you can set all your options for the transfer via the curl_exec() and then you finish off your session using the curl_close(). Here is an example that uses the CURL functions to fetch the PHP homepage into a file:

Example 1. Using PHP's CURL module to fetch the PHP homepage

<?php

$ch = curl_init ("http://www.php.net/");

$fp = fopen ("php_homepage.txt", "w");

curl_setopt ($ch, CURLOPT_INFILE, $fp);

curl_setopt ($ch, CURLOPT_HEADER, 0);

curl_exec ($ch);

curl_close ($ch);

fclose ($fp);

?>

curl_init (PHP4 CVS only)

Initialize a CURL session

int curl_init ([string url])

 The curl_init() will initialize a new session and return a CURL handle for use with the curl_setopt(), curl_exec(), and curl_close() functions. If the optional url parameter is supplied then the CURLOPT_URL option will be set to the value of the parameter. You can manually set this using the curl_setopt() function.

Example 1. Initializing a new CURL session and fetching a webpage

<?php

$ch = curl_init();

curl_setopt ($ch, CURLOPT_URL, "http://www.zend.com/");

curl_setopt ($ch, CURLOPT_HEADER, 0);

curl_exec ($ch);

curl_close ($ch);

?>

 See also: curl_close(), curl_setopt()

curl_setopt (PHP4 CVS only)

Set an option for a CURL transfer

bool curl_setopt (int ch, string option, mixed value)

 The curl_setopt() function will set options for a CURL session identified by the ch parameter. The option parameter is the option you want to set, and the value is the value of the option given by the option.

 The value should be a long for the following options (specified in the option parameter):

•
 CURLOPT_INFILESIZE: When you are uploading a file to a remote site, this option should be used to tell PHP what the expected size of the infile will be.

•
 CURLOPT_VERBOSE: Set this option to a non-zero value if you want CURL to report everything that is happening.

•
 CURLOPT_HEADER: Set this option to a non-zero value if you want the header to be included in the output.

•
 CURLOPT_NOPROGRESS: Set this option to a non-zero value if you don't want PHP to display a progress meter for CURL transfers

Note: PHP automatically sets this option to a non-zero parameter, this should only be changed for debugging purposes.

•
 CURLOPT_NOBODY: Set this option to a non-zero value if you don't want the body included with the output.

•
 CURLOPT_FAILONERROR: Set this option to a non-zero value if you want PHP to fail silently if the HTTP code returned is greater than 300. The default behaviour is to return the page normally, ignoring the code.

•
 CURLOPT_UPLOAD: Set this option to a non-zero value if you want PHP to prepare for an upload.

•
 CURLOPT_POST: Set this option to a non-zero value if you want PHP to do a regular HTTP POST. This POST is a normal application/x-www-from-urlencoded kind, most commonly used by HTML forms.

•
 CURLOPT_FTPLISTONLY: Set this option to a non-zero value and PHP will just list the names of an FTP directory.

•
 CURLOPT_FTPAPPEND: Set this option to a non-zero value and PHP will append to the remote file instead of overwriting it.

•
 CURLOPT_NETRC: Set this option to a non-zero value and PHP will scan your ~./netrc file to find your username and password for the remote site that you're establishing a connection with.

•
 CURLOPT_FOLLOWLOCATION: Set this option to a non-zero value to follow any "Location: " header that the server sends as a part of the HTTP header (note this is recursive, PHP will follow as many "Location: " headers that it is sent.)

•
 CURLOPT_PUT: Set this option a non-zero value to HTTP PUT a file. The file to PUT must be set with the CURLOPT_INFILE and CURLOPT_INFILESIZE.

•
 CURLOPT_MUTE: Set this option to a non-zero value and PHP will be completely silent with regards to the CURL functions.

•
 CURLOPT_TIMEOUT: Pass a long as a parameter that contains the maximum time, in seconds, that you'll allow the curl functions to take.

•
 CURLOPT_LOW_SPEED_LIMIT: Pass a long as a parameter that contains the transfer speed in bytes per second that the transfer should be below during CURLOPT_LOW_SPEED_TIME seconds for PHP to consider it too slow and abort.

•
 CURLOPT_LOW_SPEED_TIME: Pass a long as a parameter that contains the time in seconds that the transfer should be below the CURLOPT_LOW_SPEED_LIMIT for PHP to consider it too slow and abort.

•
 CURLOPT_RESUME_FROM: Pass a long as a parameter that contains the offset, in bytes, that you want the transfer to start from.

•
 CURLOPT_SSLVERSION: Pass a long as a parameter that contains the SSL version (2 or 3) to use. By default PHP will try and determine this by itself, although, in some cases you must set this manually.

•
 CURLOPT_TIMECONDITION: Pass a long as a parameter that defines how the CURLOPT_TIMEVALUE is treated. You can set this parameter to TIMECOND_IFMODSINCE or TIMECOND_ISUNMODSINCE. This is a HTTP-only feature.

•
 CURLOPT_TIMEVALUE: Pass a long as a parameter that is the time in seconds since January 1st, 1970. The time will be used as specified by the CURLOPT_TIMEVALUE option, or by default the TIMECOND_IFMODSINCE will be used.

 The value parameter should be a string for the following values of the option parameter:

•
 CURLOPT_URL: This is the URL that you want PHP to fetch. You can also set this option when initializing a session with the curl_init() function.

•
 CURLOPT_USERPWD: Pass a string formatted in the [username]:[password] manner, for PHP to use for the connection. connection.

•
 CURLOPT_PROXYUSERPWD: Pass a string formatted in the [username]:[password] format for connection to the HTTP proxy.

•
 CURLOPT_RANGE: Pass the specified range you want. It should be in the "X-Y" format, where X or Y may be left out. The HTTP transfers also support several intervals, seperated with commas as in X-Y,N-M.

•
 CURLOPT_POSTFIELDS: Pass a string containing the full data to post in an HTTP "POST" operation.

•
 CURLOPT_REFERER: Pass a string containing the "referer" header to be used in an HTTP request.

•
 CURLOPT_USERAGENT: Pass a string containing the "user-agent" header to be used in an HTTP request.

•
 CURLOPT_FTPPORT: Pass a string containing the which will be used to get the IP address to use for the ftp "PORT" instruction. The POST instruction tells the remote server to connect to our specified IP address. The string may be a plain IP address, a hostname, a network interface name (under UNIX), or just a plain '-' to use the systems default IP address.

•
 CURLOPT_COOKIE: Pass a string containing the content of the cookie to be set in the HTTP header.

•
 CURLOPT_SSLCERT: Pass a string containing the filename of PEM formatted certificate.

•
 CURLOPT_SSLCERTPASSWD: Pass a string containing the password required to use the CURLOPT_SSLCERT certificate.

•
 CURLOPT_COOKIEFILE: Pass a string containing the name of the file containing the cookiee data. The cookie file can be in Netscape format, or just plain HTTP-style headers dumped into a file.

•
 CURLOPT_CUSTOMREQUEST: Pass a string to be used instead of GET or HEAD when doing an HTTP request. This is useful for doing DELETE or another, more obscure, HTTP request.

Note: Don't do this without making sure your server supports the command first.

 The following options expect a file descriptor that is obtained by using the fopen() function:

•
 CURLOPT_FILE: The file where the output of your transfer should be placed, the default is STDOUT.

•
 CURLOPT_INFILE: The file where the input of your transfer comes from.

•
 CURLOPT_WRITEHEADER: The file to write the header part of the output into.

•
 CURLOPT_STDERR: The file to write errors to instead of stderr.

curl_exec (PHP4 CVS only)

Perform a CURL session

bool curl_exec (int ch)

 This function is should be called after you initialize a CURL session and all the options for the session are set. Its purpose is simply to execute the predefined CURL session (given by the ch).

curl_close (PHP4 CVS only)

Close a CURL session

void curl_close (int ch)

 This functions closes a CURL session and frees all ressources. The CURL handle, ch, is also deleted.

curl_version (PHP4 CVS only)

Return the current CURL version

string curl_version (void);

 The curl_version() function returns a string containing the current CURL version.

XI. Cybercash payment functions

 These functions are only available if the interpreter has been compiled with the --with-cybercash=[DIR]. These functions have been added in PHP4.

cybercash_encr (PHP4 >= 4.0b4)

???

array cybercash_encr (string wmk, string sk, string inbuff)

 The function returns an associative array with the elements "errcode" and, if "errcode" is false, "outbuff" (string), "outLth" (long) and "macbuff" (string).

cybercash_decr (PHP4 >= 4.0b4)

???

array cybercash_decr (string wmk, string sk, string inbuff)

 The function returns an associative array with the elements "errcode" and, if "errcode" is false, "outbuff" (string), "outLth" (long) and "macbuff" (string).

cybercash_base64_encode (PHP4 >= 4.0b4)

???

string cybercash_base64_encode (string inbuff)

cybercash_base64_decode (PHP4 >= 4.0b4)

string cybercash_base64_decode (string inbuff)

XII. Database (dbm-style) abstraction layer functions

 These functions build the foundation for accessing Berkeley DB style databases.

 This is a general abstraction layer for several file-based databases. As such, functionality is limited to a subset of features modern databases such as Sleepycat Software's DB2 (http://www.sleepycat.com/) support. (This is not to be confused with IBM's DB2 software, which is supported through the ODBC functions.)

 The behaviour of various aspects depend on the implementation of the underlying database. Functions such as dba_optimize() and dba_sync() will do what they promise for one database and will do nothing for others.

 To add support for any of the following handlers, add the specified --with configure switch to your PHP configure line:

•
 Dbm is the oldest (original) type of Berkeley DB style databases. You should avoid it, if possible. We do not support the compatibility functions built into DB2 and gdbm, because they are only compatible on the source code level, but cannot handle the original dbm format. (--with-dbm)

•
 Ndbm is a newer type and more flexible than dbm. It still has most of the arbitrary limits of dbm (therefore it is deprecated). (--with-ndbm)

•
 Gdbm is the GNU database manager (ftp://ftp.gnu.org/pub/gnu/gdbm/). (--with-gdbm)

•
 DB2 is Sleepycat Software's DB2 (http://www.sleepycat.com/). It is described as "a programmatic toolkit that provides high-performance built-in database support for both standalone and client/server applications." (--with-db2)

•
 DB3 is Sleepycat Software's DB3 (http://www.sleepycat.com/). (--with-db3)

•
 Cdb is "a fast, reliable, lightweight package for creating and reading constant databases." It is from the author of qmail and can be found here (http://pobox.com/~djb/cdb.html). Since it is constant, we support only reading operations. (--with-cdb)

Example 1. DBA example

<?php

$id = dba_open ("/tmp/test.db", "n", "db2");

if (!$id) {

 echo "dba_open failed\n";

 exit;

}

dba_replace ("key", "This is an example!", $id);

if (dba_exists ("key", $id)) {

 echo dba_fetch ("key", $id);

 dba_delete ("key", $id);

}

dba_close ($id);

?>

 DBA is binary safe and does not have any arbitrary limits. It inherits all limits set by the underlying database implementation.

 All file-based databases must provide a way of setting the file mode of a new created database, if that is possible at all. The file mode is commonly passed as the fourth argument to dba_open() or dba_popen().

 You can access all entries of a database in a linear way by using the dba_firstkey() and dba_nextkey() functions. You may not change the database while traversing it.

Example 2. Traversing a database

<?php

...open database...

$key = dba_firstkey ($id);

while ($key != false) {

 if (...) { # remember the key to perform some action later

 $handle_later[] = $key;

 }

 $key = dba_nextkey ($id);

}

for ($i = 0; $i < count($handle_later); $i++)

 dba_delete ($handle_later[$i], $id);

?>

dba_close (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Close database

void dba_close (int handle)

 Dba_close() closes the established database and frees all resources specified by handle.

 handle is a database handle returned by dba_open().

 Dba_close() does not return any value.

 See also: dba_open() and dba_popen()

dba_delete (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Delete entry specified by key

string dba_delete (string key, int handle)

 dba_delete() deletes the entry specified by key from the database specified with handle.

 key is the key of the entry which is deleted.

 handle is a database handle returned by dba_open().

 dba_delete() returns true or false, if the entry is deleted or not deleted, respectively.

 See also: dba_exists(), dba_fetch(), dba_insert(), and dba_replace().

dba_exists (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Check whether key exists

bool dba_exists (string key, int handle)

 Dba_exists() checks whether the specified key exists in the database specified by handle.

 Key is the key the check is performed for.

 Handle is a database handle returned by dba_open().

 Dba_exists() returns true or false, if the key is found or not found, respectively.

 See also: dba_fetch(), dba_delete(), dba_insert(), and dba_replace().

dba_fetch (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Fetch data specified by key

string dba_fetch (string key, int handle)

 Dba_fetch() fetches the data specified by key from the database specified with handle.

 Key is the key the data is specified by.

 Handle is a database handle returned by dba_open().

 Dba_fetch() returns the associated string or false, if the key/data pair is found or not found, respectively.

 See also: dba_exists(), dba_delete(), dba_insert(), and dba_replace().

dba_firstkey (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Fetch first key

string dba_firstkey (int handle)

 Dba_firstkey() returns the first key of the database specified by handle and resets the internal key pointer. This permits a linear search through the whole database.

 Handle is a database handle returned by dba_open().

 Dba_firstkey() returns the key or false depending on whether it succeeds or fails, respectively.

 See also: Dba_nextkey()

dba_insert (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Insert entry

bool dba_insert (string key, string value, int handle)

 dba_insert() inserts the entry described with key and value into the database specified by handle. It fails, if an entry with the same key already exists.

 key is the key of the entry to be inserted.

 value is the value to be inserted.

 handle is a database handle returned by dba_open().

 dba_insert() returns true or false, depending on whether it succeeds of fails, respectively.

 See also: dba_exists() dba_delete() dba_fetch() dba_replace()

dba_nextkey (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Fetch next key

string dba_nextkey (int handle)

 dba_nextkey() returns the next key of the database specified by handle and increments the internal key pointer.

 handle is a database handle returned by dba_open().

 dba_nextkey() returns the key or false depending on whether it succeeds or fails, respectively.

 See also: dba_firstkey()

dba_popen (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Open database persistently

int dba_popen (string path, string mode, string handler [, ...])

 dba_popen() establishes a persistent database instance for path with mode using handler.

 path is commonly a regular path in your filesystem.

 mode is "r" for read access, "w" for read/write access to an already existing database, "c" for read/write access and database creation if it doesn't currently exist, and "n" for create, truncate and read/write access.

 handler is the name of the handler which shall be used for accessing path. It is passed all optional parameters given to dba_popen() and can act on behalf of them.

 dba_popen() returns a positive handler id or false, in the case the open is successful or fails, respectively.

 See also: dba_open() dba_close()

dba_open (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Open database

int dba_open (string path, string mode, string handler [, ...])

 dba_open() establishes a database instance for path with mode using handler.

 path is commonly a regular path in your filesystem.

 mode is "r" for read access, "w" for read/write access to an already existing database, "c" for read/write access and database creation if it doesn't currently exist, and "n" for create, truncate and read/write access.

 handler is the name of the handler which shall be used for accessing path. It is passed all optional parameters given to dba_open() and can act on behalf of them.

 dba_open() returns a positive handler id or false, in the case the open is successful or fails, respectively.

 See also: dba_popen() dba_close()

dba_optimize (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Optimize database

bool dba_optimize (int handle)

 dba_optimize() optimizes the underlying database specified by handle.

 handle is a database handle returned by dba_open().

 dba_optimize() returns true or false, if the optimization succeeds or fails, respectively.

 See also: dba_sync()

dba_replace (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Replace or insert entry

bool dba_replace (string key, string value, int handle)

 dba_replace() replaces or inserts the entry described with key and value into the database specified by handle.

 key is the key of the entry to be inserted.

 value is the value to be inserted.

 handle is a database handle returned by dba_open().

 dba_replace() returns true or false, depending on whether it succeeds of fails, respectively.

 See also: dba_exists() dba_delete() dba_fetch() dba_insert()

dba_sync (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Synchronize database

bool dba_sync (int handle)

 dba_sync() synchronizes the database specified by handle. This will probably trigger a physical write to disk, if supported.

 handle is a database handle returned by dba_open().

 dba_sync() returns true or false, if the synchronization succeeds or fails, respectively.

 See also: dba_optimize()

XIII. Date and Time functions

checkdate (PHP3 , PHP4)

Validate a date/time

int checkdate (int month, int day, int year)

 Returns true if the date given is valid; otherwise returns false. Checks the validity of the date formed by the arguments. A date is considered valid if:

•
 year is between 0 and 32767 inclusive

•
 month is between 1 and 12 inclusive

•
 Day is within the allowed number of days for the given month. Leap years are taken into consideration.

date (PHP3 , PHP4)

Format a local time/date

string date (string format [, int timestamp])

 Returns a string formatted according to the given format string using the given timestamp or the current local time if no timestamp is given.

 The following characters are recognized in the format string:

•
 a - "am" or "pm"

•
 A - "AM" or "PM"

•
 B - Swatch Internet time

•
 d - day of the month, 2 digits with leading zeros; i.e. "01" to "31"

•
 D - day of the week, textual, 3 letters; i.e. "Fri"

•
 F - month, textual, long; i.e. "January"

•
 g - hour, 12-hour format without leading zeros; i.e. "1" to "12"

•
 G - hour, 24-hour format without leading zeros; i.e. "0" to "23"

•
 h - hour, 12-hour format; i.e. "01" to "12"

•
 H - hour, 24-hour format; i.e. "00" to "23"

•
 i - minutes; i.e. "00" to "59"

•
 I (capital i) - "1" if Daylight Savings Time, "0" otherwise.

•
 j - day of the month without leading zeros; i.e. "1" to "31"

•
 l (lowercase 'L') - day of the week, textual, long; i.e. "Friday"

•
 L - boolean for whether it is a leap year; i.e. "0" or "1"

•
 m - month; i.e. "01" to "12"

•
 M - month, textual, 3 letters; i.e. "Jan"

•
 n - month without leading zeros; i.e. "1" to "12"

•
 s - seconds; i.e. "00" to "59"

•
 S - English ordinal suffix, textual, 2 characters; i.e. "th", "nd"

•
 t - number of days in the given month; i.e. "28" to "31"

•
 T - Timezone setting of this machine; i.e. "MDT"

•
 U - seconds since the epoch

•
 w - day of the week, numeric, i.e. "0" (Sunday) to "6" (Saturday)

•
 Y - year, 4 digits; i.e. "1999"

•
 y - year, 2 digits; i.e. "99"

•
 z - day of the year; i.e. "0" to "365"

•
 Z - timezone offset in seconds (i.e. "-43200" to "43200")

 Unrecognized characters in the format string will be printed as-is. The "Z" format will always return "0" when using gmdate().

Example 1. Date() example

print (date ("l dS of F Y h:i:s A"));

print ("July 1, 2000 is on a " . date ("l", mktime(0,0,0,7,1,2000)));

 It is possible to use date() and mktime() together to find dates in the future or the past.

Example 2. Date() and mktime() example

$tomorrow = mktime (0,0,0,date("m") ,date("d")+1,date("Y"));

$lastmonth = mktime (0,0,0,date("m")-1,date("d"), date("Y"));

$nextyear = mktime (0,0,0,date("m"), date("d"), date("Y")+1);

 To format dates in other languages, you should use the setlocale() and strftime() functions.

 See also gmdate() and mktime().

getdate (PHP3 , PHP4)

Get date/time information

array getdate (int timestamp)

 Returns an associative array containing the date information of the timestamp as the following array elements:

•
 "seconds" - seconds

•
 "minutes" - minutes

•
 "hours" - hours

•
 "mday" - day of the month

•
 "wday" - day of the week, numeric

•
 "mon" - month, numeric

•
 "year" - year, numeric

•
 "yday" - day of the year, numeric; i.e. "299"

•
 "weekday" - day of the week, textual, full; i.e. "Friday"

•
 "month" - month, textual, full; i.e. "January"

gettimeofday (PHP3 >= 3.0.7, PHP4 >= 4.0b4)

Get current time

array gettimeofday (void)

 This is an interface to gettimeofday(2). It returns an associative array containing the data returned from the system call.

•
 "sec" - seconds

•
 "usec" - microseconds

•
 "minuteswest" - minutes west of Greenwich

•
 "dsttime" - type of dst correction

gmdate (PHP3 , PHP4)

Format a GMT/CUT date/time

string gmdate (string format, int timestamp)

 Identical to the date() function except that the time returned is Greenwich Mean Time (GMT). For example, when run in Finland (GMT +0200), the first line below prints "Jan 01 1998 00:00:00", while the second prints "Dec 31 1997 22:00:00".

Example 1. Gmdate() example

echo date ("M d Y H:i:s", mktime (0,0,0,1,1,1998));

echo gmdate ("M d Y H:i:s", mktime (0,0,0,1,1,1998));

 See also date(), mktime(), and gmmktime().

gmmktime (PHP3 , PHP4)

Get UNIX timestamp for a GMT date

int gmmktime (int hour, int minute, int second, int month, int day, int year [, int is_dst])

 Identical to mktime() except the passed parameters represents a GMT date.

gmstrftime (PHP3 >= 3.0.12, PHP4 >= 4.0RC2)

 Format a GMT/CUT time/date according to locale settings

string gmstrftime (string format, int timestamp)

 Behaves the same as strftime() except that the time returned is Greenwich Mean Time (GMT). For example, when run in Eastern Standard Time (GMT -0500), the first line below prints "Dec 31 1998 20:00:00", while the second prints "Jan 01 1999 01:00:00".

Example 1. Gmstrftime() example

setlocale ('LC_TIME', 'en_US');

echo strftime ("%b %d %Y %H:%M:%S", mktime (20,0,0,12,31,98))."\n";

echo gmstrftime ("%b %d %Y %H:%M:%S", mktime (20,0,0,12,31,98))."\n";

 See also strftime().

localtime (PHP4 >= 4.0RC2)

Get the local time

array localtime ([int timestamp [, bool is_associative]])

 The localtime() function returns an array identical to that of the structure returned by the C function call. The first argument to localtime() is the timestamp, if this is not given the current time is used. The second argument to the localtime() is the is_associative, if this is set to 0 or not supplied than the array is returned as a regular, numerically indexed array. If the argument is set to 1 then localtime() is an associative array containing all the different elements of the structure returned by the C function call to localtime. The names of the different keys of the associative array are as follows:

•
 "tm_sec" - seconds

•
 "tm_min" - minutes

•
 "tm_hour" - hour

•
 "tm_mday" - day of the month

•
 "tm_mon" - month of the year

•
 "tm_year" - Year, not y2k compliant

•
 "tm_wday" - Day of the week

•
 "tm_yday" - Day of the year

•
 "tm_isdst" - Is daylight savings time in effect

microtime (PHP3 , PHP4)

 Return current UNIX timestamp with microseconds

string microtime(void);

 Returns the string "msec sec" where sec is the current time measured in the number of seconds since the Unix Epoch (0:00:00 January 1, 1970 GMT), and msec is the microseconds part. This function is only available on operating systems that support the gettimeofday() system call.

 See also time().

mktime (PHP3 , PHP4)

Get UNIX timestamp for a date

int mktime (int hour, int minute, int second, int month, int day, int year [, int is_dst])

 Warning: Note the strange order of arguments, which differs from the order of arguments in a regular UNIX mktime() call and which does not lend itself well to leaving out parameters from right to left (see below). It is a common error to mix these values up in a script.

 Returns the Unix timestamp corresponding to the arguments given. This timestamp is a long integer containing the number of seconds between the Unix Epoch (January 1 1970) and the time specified.

 Arguments may be left out in order from right to left; any arguments thus omitted will be set to the current value according to the local date and time.

 Is_dst can be set to 1 if the time is during daylight savings time, 0 if it is not, or -1 (the default) if it is unknown whether the time is within daylight savings time or not.

Note: Is_dst was added in 3.0.10.

 Mktime() is useful for doing date arithmetic and validation, as it will automatically calculate the correct value for out-of-range input. For example, each of the following lines produces the string "Jan-01-1998".

Example 1. Mktime() example

echo date ("M-d-Y", mktime (0,0,0,12,32,1997));

echo date ("M-d-Y", mktime (0,0,0,13,1,1997));

echo date ("M-d-Y", mktime (0,0,0,1,1,1998));

echo date ("M-d-Y", mktime (0,0,0,1,1,98));

 Year may be a two or four digit value, with values between 0-69 mapping to 2000-2069 and 70-99 to 1970-1999 (on systems where time_t is a 32bit signed integer, as most common today, the valid range for year is somewhere between 1902 and 2037).

 The last day of any given month can be expressed as the "0" day of the next month, not the -1 day. Both of the following examples will produce the string "The last day in Feb 2000 is: 29".

Example 2. Last day of next month

$lastday = mktime (0,0,0,3,0,2000);

echo strftime ("Last day in Feb 2000 is: %d", $lastday);

$lastday = mktime (0,0,0,4,-31,2000);

echo strftime ("Last day in Feb 2000 is: %d", $lastday);

 See also date() and time().

strftime (PHP3 , PHP4)

 Format a local time/date according to locale settings

string strftime (string format [, int timestamp])

 Returns a string formatted according to the given format string using the given timestamp or the current local time if no timestamp is given. Month and weekday names and other language dependent strings respect the current locale set with setlocale().

 The following conversion specifiers are recognized in the format string:

•
 %a - abbreviated weekday name according to the current locale

•
 %A - full weekday name according to the current locale

•
 %b - abbreviated month name according to the current locale

•
 %B - full month name according to the current locale

•
 %c - preferred date and time representation for the current locale

•
 %C - century number (the year divided by 100 and truncated to an integer, range 00 to 99)

•
 %d - day of the month as a decimal number (range 00 to 31)

•
 %D - same as %m/%d/%y

•
 %e - day of the month as a decimal number, a single digit is preceded by a space (range ' 1' to '31')

•
 %h - same as %b

•
 %H - hour as a decimal number using a 24-hour clock (range 00 to 23)

•
 %I - hour as a decimal number using a 12-hour clock (range 01 to 12)

•
 %j - day of the year as a decimal number (range 001 to 366)

•
 %m - month as a decimal number (range 1 to 12)

•
 %M - minute as a decimal number

•
 %n - newline character

•
 %p - either `am' or `pm' according to the given time value, or the corresponding strings for the current locale

•
 %r - time in a.m. and p.m. notation

•
 %R - time in 24 hour notation

•
 %S - second as a decimal number

•
 %t - tab character

•
 %T - current time, equal to %H:%M:%S

•
 %u - weekday as a decimal number [1,7], with 1 representing Monday

•
 %U - week number of the current year as a decimal number, starting with the first Sunday as the first day of the first week

•
 %V - The ISO 8601:1988 week number of the current year as a decimal number, range 01 to 53, where week 1 is the first week that has at least 4 days in the current year, and with Monday as the first day of the week.

•
 %W - week number of the current year as a decimal number, starting with the first Monday as the first day of the first week

•
 %w - day of the week as a decimal, Sunday being 0

•
 %x - preferred date representation for the current locale without the time

•
 %X - preferred time representation for the current locale without the date

•
 %y - year as a decimal number without a century (range 00 to 99)

•
 %Y - year as a decimal number including the century

•
 %Z - time zone or name or abbreviation

•
 %% - a literal `%' character

Example 1. Strftime() example

setlocale ("LC_TIME", "C");

print (strftime ("%A in Finnish is "));

setlocale ("LC_TIME", "fi_FI");

print (strftime ("%A, in French "));

setlocale ("LC_TIME", "fr_CA");

print (strftime ("%A and in German "));

setlocale ("LC_TIME", "de_DE");

print (strftime ("%A.\n"));

 This example works if you have the respective locales installed in your system.

 See also setlocale() and mktime() and the Open Group specification of strftime()() (http://www.opengroup.org/onlinepubs/7908799/xsh/strftime.html).

time (PHP3 , PHP4)

Return current UNIX timestamp

int time(void);

 Returns the current time measured in the number of seconds since the Unix Epoch (January 1 1970 00:00:00 GMT).

 See also date().

strtotime (PHP3 >= 3.0.12, PHP4 >= 4.0b2)

 Parse about any english textual datetime description into a UNIX timestamp

int strtotime (string time [, int now])

 The function expects to be given a string containing an english date format and will try to parse that format into a UNIX timestamp.

Example 1. Strtotime() example

echo strtotime ("10 march 2000") . "\n";

XIV. dBase functions

 These functions allow you to access records stored in dBase-format (dbf) databases.

 There is no support for indexes or memo fields. There is no support for locking, too. Two concurrent webserver processes modifying the same dBase file will very likely ruin your database.

 Unlike SQL databases, dBase "databases" cannot change the database definition afterwards. Once the file is created, the database definition is fixed. There are no indexes that speed searching or otherwise organize your data. dBase files are simple sequential files of fixed length records. Records are appended to the end of the file and delete records are kept until you call dbase_pack()().

 We recommend that you do not use dBase files as your production database. Choose any real SQL server instead; MySQL or Postgres are common choices with PHP. dBase support is here to allow you to import and export data to and from your web database, since the file format is commonly understood with Windows spreadsheets and organizers. Import and export of data is about all that dBase support is good for.

dbase_create (PHP3 , PHP4)

Creates a dBase database

int dbase_create (string filename, array fields)

 The fields parameter is an array of arrays, each array describing the format of one field in the database. Each field consists of a name, a character indicating the field type, a length, and a precision.

 The types of fields available are:

L

 Boolean. These do not have a length or precision.

M

 Memo. (Note that these aren't supported by PHP.) These do not have a length or precision.

D

 Date (stored as YYYYMMDD). These do not have a length or precision.

N

 Number. These have both a length and a precision (the number of digits after the decimal point).

C

 String.

 If the database is successfully created, a dbase_identifier is returned, otherwise false is returned.

Example 1. Creating a dBase database file

// "database" name

$dbname = "/tmp/test.dbf";

// database "definition"

$def =

 array(

 array("date", "D"),

 array("name", "C", 50),

 array("age", "N", 3, 0),

 array("email", "C", 128),

 array("ismember", "L")

);

// creation

if (!dbase_create($dbname, $def))

 print "Error!";

dbase_open (PHP3 , PHP4)

Opens a dBase database

int dbase_open (string filename, int flags)

 The flags correspond to those for the open() system call. (Typically 0 means read-only, 1 means write-only, and 2 means read and write.)

 Returns a dbase_identifier for the opened database, or false if the database couldn't be opened.

dbase_close (PHP3 , PHP4)

Close a dBase database

bool dbase_close (int dbase_identifier)

 Closes the database associated with dbase_identifier.

dbase_pack (PHP3 , PHP4)

Packs a dBase database

bool dbase_pack (int dbase_identifier)

 Packs the specified database (permanently deleting all records marked for deletion using dbase_delete_record().

dbase_add_record (PHP3 , PHP4)

Add a record to a dBase database

bool dbase_add_record (int dbase_identifier, array record)

 Adds the data in the record to the database. If the number of items in the supplied record isn't equal to the number of fields in the database, the operation will fail and false will be returned.

dbase_replace_record (PHP3 >= 3.0.11, PHP4)

Replace a record in a dBase database

bool dbase_replace_record (int dbase_identifier, array record, int dbase_record_number)

 Replaces the data associated with the record record_number with the data in the record in the database. If the number of items in the supplied record is not equal to the number of fields in the database, the operation will fail and false will be returned.

 dbase_record_number is an integer which spans from 1 to the number of records in the database (as returned by dbase_numrecords()).

dbase_delete_record (PHP3 , PHP4)

Deletes a record from a dBase database

bool dbase_delete_record (int dbase_identifier, int record)

 Marks record to be deleted from the database. To actually remove the record from the database, you must also call dbase_pack().

dbase_get_record (PHP3 , PHP4)

Gets a record from a dBase database

array dbase_get_record (int dbase_identifier, int record)

 Returns the data from record in an array. The array is indexed starting at 0, and includes an associative member named 'deleted' which is set to 1 if the record has been marked for deletion (see dbase_delete_record().

 Each field is converted to the appropriate PHP type. (Dates are left as strings.)

dbase_get_record_with_names (PHP3 >= 3.0.4, PHP4)

 Gets a record from a dBase database as an associative array

array dbase_get_record_with_names (int dbase_identifier, int record)

 Returns the data from record in an associative array. The array also includes an associative member named 'deleted' which is set to 1 if the record has been marked for deletion (see dbase_delete_record().

 Each field is converted to the appropriate PHP type. (Dates are left as strings.)

dbase_numfields (PHP3 , PHP4)

 Find out how many fields are in a dBase database

int dbase_numfields (int dbase_identifier)

 Returns the number of fields (columns) in the specified database. Field numbers are between 0 and dbase_numfields($db)-1, while record numbers are between 1 and dbase_numrecords($db).

Example 1. Using dbase_numfields()

$rec = dbase_get_record($db, $recno);

$nf = dbase_numfields($db);

for ($i=0; $i < $nf; $i++) {

 print $rec[$i]."
\n";

}

dbase_numrecords (PHP3 , PHP4)

 Find out how many records are in a dBase database

int dbase_numrecords (int dbase_identifier)

 Returns the number of records (rows) in the specified database. Record numbers are between 1 and dbase_numrecords($db), while field numbers are between 0 and dbase_numfields($db)-1.

XV. DBM Functions

 These functions allow you to store records stored in a dbm-style database. This type of database (supported by the Berkeley DB, GDBM, and some system libraries, as well as a built-in flatfile library) stores key/value pairs (as opposed to the full-blown records supported by relational databases).

Example 1. DBM example

$dbm = dbmopen ("lastseen", "w");

if (dbmexists ($dbm, $userid)) {

 $last_seen = dbmfetch ($dbm, $userid);

} else {

 dbminsert ($dbm, $userid, time());

}

do_stuff();

dbmreplace ($dbm, $userid, time());

dbmclose ($dbm);

dbmopen (PHP3 , PHP4)

Opens a DBM database

int dbmopen (string filename, string flags)

 The first argument is the full-path filename of the DBM file to be opened and the second is the file open mode which is one of "r", "n", "c" or "w" for read-only, new (implies read-write, and most likely will truncate an already-existing database of the same name), create (implies read-write, and will not truncate an already-existing database of the same name) and read-write respectively.

 Returns an identifer to be passed to the other DBM functions on success, or false on failure.

 If NDBM support is used, NDBM will actually create filename.dir and filename.pag files. GDBM only uses one file, as does the internal flat-file support, and Berkeley DB creates a filename.db file. Note that PHP does its own file locking in addition to any file locking that may be done by the DBM library itself. PHP does not delete the .lck files it creates. It uses these files simply as fixed inodes on which to do the file locking. For more information on DBM files, see your Unix man pages, or obtain GNU's GDBM (ftp://ftp.gnu.org/pub/gnu/gdbm/).

dbmclose (PHP3 , PHP4)

Closes a dbm database

bool dbmclose (int dbm_identifier)

 Unlocks and closes the specified database.

dbmexists (PHP3 , PHP4)

 Tells if a value exists for a key in a DBM database

bool dbmexists (int dbm_identifier, string key)

 Returns TRUE if there is a value associated with the key.

dbmfetch (PHP3 , PHP4)

 Fetches a value for a key from a DBM database

string dbmfetch (int dbm_identifier, string key)

 Returns the value associated with key.

dbminsert (PHP3 , PHP4)

 Inserts a value for a key in a DBM database

int dbminsert (int dbm_identifier, string key, string value)

 Adds the value to the database with the specified key.

 Returns -1 if the database was opened read-only, 0 if the insert was successful, and 1 if the specified key already exists. (To replace the value, use dbmreplace().)

dbmreplace (PHP3 , PHP4)

 Replaces the value for a key in a DBM database

bool dbmreplace (int dbm_identifier, string key, string value)

 Replaces the value for the specified key in the database.

 This will also add the key to the database if it didn't already exist.

dbmdelete (PHP3 , PHP4)

 Deletes the value for a key from a DBM database

bool dbmdelete (int dbm_identifier, string key)

 Deletes the value for key in the database.

 Returns false if the key didn't exist in the database.

dbmfirstkey (PHP3 , PHP4)

 Retrieves the first key from a DBM database

string dbmfirstkey (int dbm_identifier)

 Returns the first key in the database. Note that no particular order is guaranteed since the database may be built using a hash-table, which doesn't guarantee any ordering.

dbmnextkey (PHP3 , PHP4)

 Retrieves the next key from a DBM database

string dbmnextkey (int dbm_identifier, string key)

 Returns the next key after key. By calling dbmfirstkey() followed by successive calls to dbmnextkey() it is possible to visit every key/value pair in the dbm database. For example:

Example 1. Visiting every key/value pair in a DBM database

$key = dbmfirstkey ($dbm_id);

while ($key) {

 echo "$key = " . dbmfetch ($dbm_id, $key) . "\n";

 $key = dbmnextkey ($dbm_id, $key);

}

dblist (PHP3 , PHP4)

 Describes the DBM-compatible library being used

string dblist (void)

XVI. Directory functions

chdir (PHP3 , PHP4)

change directory

int chdir (string directory)

 Changes PHP's current directory to directory. Returns FALSE if unable to change directory, TRUE otherwise.

dir (PHP3 , PHP4)

directory class

new dir (string directory)

 A pseudo-object oriented mechanism for reading a directory. The given directory is opened. Two properties are available once directory has been opened. The handle property can be used with other directory functions such as readdir(), rewinddir() and closedir(). The path property is set to path the directory that was opened. Three methods are available: read, rewind and close.

Example 1. Dir() Example

$d = dir("/etc");

echo "Handle: ".$d->handle."
\n";

echo "Path: ".$d->path."
\n";

while($entry=$d->read()) {

 echo $entry."
\n";

}

$d->close();

closedir (PHP3 , PHP4)

close directory handle

void closedir (int dir_handle)

 Closes the directory stream indicated by dir_handle. The stream must have previously been opened by opendir().

opendir (PHP3 , PHP4)

open directory handle

int opendir (string path)

 Returns a directory handle to be used in subsequent closedir(), readdir(), and rewinddir() calls.

readdir (PHP3 , PHP4)

read entry from directory handle

string readdir (int dir_handle)

 Returns the filename of the next file from the directory. The filenames are not returned in any particular order.

Example 1. List all files in the current directory

<?php

$handle=opendir('.');

echo "Directory handle: $handle\n";

echo "Files:\n";

while (($file = readdir($handle))!==false) {

 echo "$file\n";

}

closedir($handle);

?>

 Note that readdir() will return the . and .. entries. If you don't want these, simply strip them out:

Example 2. List all files in the current directory and strip out . and ..

<?php

$handle=opendir('.');

while (false!==($file = readdir($handle))) {

 if ($file != "." && $file != "..") {

 echo "$file\n";

 }

}

closedir($handle);

?>

rewinddir (PHP3 , PHP4)

rewind directory handle

void rewinddir (int dir_handle)

 Resets the directory stream indicated by dir_handle to the beginning of the directory.

XVII. Dynamic Loading functions

dl (PHP3 , PHP4)

load a PHP extension at runtime

int dl (string library)

 Loads the PHP extension defined in library. See also the extension_dir configuration directive.

XVIII. DOM XML functions

 These functions are only available if PHP was configured with --with-dom=[DIR], using the GNOME xml library. You will need at least libxml-2.0.0 (the beta version will not work). These functions have been added in PHP4.

 This module defines the following constants:

Table 1. XML constants

	Constant
	Value
	Description

	XML_ELEMENT_NODE
	1
	

	XML_ATTRIBUTE_NODE
	2
	

	XML_TEXT_NODE
	3
	

	XML_CDATA_SECTION_NODE
	4
	

	XML_ENTITY_REF_NODE
	5
	

	XML_ENTITY_NODE
	6
	

	XML_PI_NODE
	7
	

	XML_COMMENT_NODE
	8
	

	XML_DOCUMENT_NODE
	9
	

	XML_DOCUMENT_TYPE_NODE
	10
	

	XML_DOCUMENT_FRAG_NODE
	11
	

	XML_NOTATION_NODE
	12
	

	XML_GLOBAL_NAMESPACE
	1
	

	XML_LOCAL_NAMESPACE
	2
	

 This module defines a number of classes. The DOM XML functions return a parsed tree of the XML document with each node being an object belonging to one of these classes.

xmldoc (PHP4 >= 4.0b4)

Creates a DOM object of an XML document

object xmldoc (string str)

 The function parses the XML document in str and returns an object of class "Dom document", having the properties "doc" (resource), "version" (string) and "type" (long).

xmldocfile (PHP4 >= 4.0b4)

Creates a DOM object from XML file

object xmldocfile (string filename)

 The function parses the XML document in the file named filename and returns an object of class "Dom document", having the properties "doc" (resource), "version" (string).

xmltree (PHP4 >= 4.0b4)

 Creates a tree of php objects from XML document

object xmltree (string str)

 The function parses the XML document in str and returns a tree PHP objects as the parsed document.

XIX. filePro functions

 These functions allow read-only access to data stored in filePro databases.

 filePro is a registered trademark of Fiserv, Inc. You can find more information about filePro at http://www.fileproplus.com/.

filepro (PHP3 , PHP4)

read and verify the map file

bool filepro (string directory)

 This reads and verifies the map file, storing the field count and info.

 No locking is done, so you should avoid modifying your filePro database while it may be opened in PHP.

filepro_fieldname (PHP3 , PHP4)

gets the name of a field

string filepro_fieldname (int field_number)

 Returns the name of the field corresponding to field_number.

filepro_fieldtype (PHP3 , PHP4)

gets the type of a field

string filepro_fieldtype (int field_number)

 Returns the edit type of the field corresponding to field_number.

filepro_fieldwidth (PHP3 , PHP4)

gets the width of a field

int filepro_fieldwidth (int field_number)

 Returns the width of the field corresponding to field_number.

filepro_retrieve (PHP3 , PHP4)

retrieves data from a filePro database

string filepro_retrieve (int row_number, int field_number)

 Returns the data from the specified location in the database.

filepro_fieldcount (PHP3 , PHP4)

find out how many fields are in a filePro database

int filepro_fieldcount(void);

 Returns the number of fields (columns) in the opened filePro database.

 See also filepro().

filepro_rowcount (PHP3 , PHP4)

find out how many rows are in a filePro database

int filepro_rowcount(void);

 Returns the number of rows in the opened filePro database.

 See also filepro().

XX. Filesystem functions

basename (PHP3 , PHP4)

 Returns filename component of path

string basename (string path)

 Given a string containing a path to a file, this function will return the base name of the file.

 On Windows, both slash (/) and backslash (\) are used as path separator character. In other environments, it is the forward slash (/).

Example 1. basename() example

$path = "/home/httpd/html/index.php3";

$file = basename ($path); // $file is set to "index.php3"

 See also: dirname()

chgrp (PHP3 , PHP4)

Changes file group

int chgrp (string filename, mixed group)

 Attempts to change the group of the file filename to group. Only the superuser may change the group of a file arbitrarily; other users may change the group of a file to any group of which that user is a member.

 Returns true on success; otherwise returns false.

 See also chown() and chmod().

Note: This function does not work on Windows systems

chmod (PHP3 , PHP4)

Changes file mode

int chmod (string filename, int mode)

 Attempts to change the mode of the file specified by filename to that given in mode.

 Note that mode is not automatically assumed to be an octal value, so strings (such as "g+w") will not work properly. To ensure the expected operation, you need to prefix mode with a zero (0):

chmod ("/somedir/somefile", 755); // decimal; probably incorrect

chmod ("/somedir/somefile", "u+rwx,go+rx"); // string; incorrect

chmod ("/somedir/somefile", 0755); // octal; correct value of mode

 Returns true on success and false otherwise.

 See also chown() and chgrp().

Note: This function does not work on Windows systems

chown (PHP3 , PHP4)

Changes file owner

int chown (string filename, mixed user)

 Attempts to change the owner of the file filename to user user. Only the superuser may change the owner of a file.

 Returns true on success; otherwise returns false.

 See also chown() and chmod().

Note: This function does not work on Windows systems

clearstatcache (PHP3 , PHP4)

Clears file stat cache

void clearstatcache(void);

 Invoking the stat or lstat system call on most systems is quite expensive. Therefore, the result of the last call to any of the status functions (listed below) is stored for use on the next such call using the same filename. If you wish to force a new status check, for instance if the file is being checked many times and may change or disappear, use this function to clear the results of the last call from memory.

 This value is only cached for the lifetime of a single request.

 Affected functions include stat(), lstat(), file_exists(), is_writeable(), is_readable(), is_executable(), is_file(), is_dir(), is_link(), filectime(), fileatime(), filemtime(), fileinode(), filegroup(), fileowner(), filesize(), filetype(), and fileperms().

copy (PHP3 , PHP4)

Copies file

int copy (string source, string dest)

 Makes a copy of a file. Returns true if the copy succeeded, false otherwise.

Example 1. Copy() example

if (!copy($file, $file.'.bak')) {

 print ("failed to copy $file...
\n");

}

 See also: rename().

delete (unknown)

A dummy manual entry

void delete (string file)

 This is a dummy manual entry to satisfy those people who are looking for unlink() or unset() in the wrong place.

 See also: unlink() to delete files, unset() to delete variables.

dirname (PHP3 , PHP4)

Returns directory name component of path

string dirname (string path)

 Given a string containing a path to a file, this function will return the name of the directory.

 On Windows, both slash (/) and backslash (\) are used as path separator character. In other environments, it is the forward slash (/).

Example 1. Dirname() example

$path = "/etc/passwd";

$file = dirname ($path); // $file is set to "/etc"

 See also: basename()

diskfreespace (PHP3 >= 3.0.7, PHP4 >= 4.0b4)

Returns available space in directory

float diskfreespace (string directory)

 Given a string containing a directory, this function will return the number of bytes available on the corresponding filesystem or disk partition.

Example 1. diskfreespace() example

$df = diskfreespace("/"); // $df contains the number of bytes

 // available on "/"

fclose (PHP3 , PHP4)

Closes an open file pointer

int fclose (int fp)

 The file pointed to by fp is closed.

 Returns true on success and false on failure.

 The file pointer must be valid, and must point to a file successfully opened by fopen() or fsockopen().

feof (PHP3 , PHP4)

Tests for end-of-file on a file pointer

int feof (int fp)

 Returns true if the file pointer is at EOF or an error occurs; otherwise returns false.

 The file pointer must be valid, and must point to a file successfully opened by fopen(), popen(), or fsockopen().

fgetc (PHP3 , PHP4)

Gets character from file pointer

string fgetc (int fp)

 Returns a string containing a single character read from the file pointed to by fp. Returns FALSE on EOF (as does feof()).

 The file pointer must be valid, and must point to a file successfully opened by fopen(), popen(), or fsockopen().

 See also fread(), fopen(), popen(), fsockopen(), and fgets().

fgetcsv (PHP3 >= 3.0.8, PHP4)

 Gets line from file pointer and parse for CSV fields

array fgetcsv (int fp, int length [, string delimiter])

 Similar to fgets() except that fgetcsv() parses the line it reads for fields in CSV format and returns an array containing the fields read. The field delimiter is a comma, unless you specifiy another delimiter with the optional third parameter.

 Fp must be a valid file pointer to a file successfully opened by fopen(), popen(), or fsockopen()

 Length must be greater than the longest line to be found in the CSV file (allowing for trailing line-end characters).

 Fgetcsv() returns false on error, including end of file.

 NB A blank line in a CSV file will be returned as an array comprising just one single null field, and will not be treated as an error.

Example 1. Fgetcsv() example - Read and print entire contents of a CSV file

$row = 1;

$fp = fopen ("test.csv","r");

while ($data = fgetcsv ($fp, 1000, ",")) {

 $num = count ($data);

 print "<p> $num fields in line $row:
";

 $row++;

 for ($c=0; $c<$num; $c++) {

 print $data[$c] . "
";

 }

}

fclose ($fp);

fgets (PHP3 , PHP4)

Gets line from file pointer

string fgets (int fp, int length)

 Returns a string of up to length - 1 bytes read from the file pointed to by fp. Reading ends when length - 1 bytes have been read, on a newline (which is included in the return value), or on EOF (whichever comes first).

 If an error occurs, returns false.

 Common Pitfalls:

 People used to the 'C' semantics of fgets should note the difference in how EOF is returned.

 The file pointer must be valid, and must point to a file successfully opened by fopen(), popen(), or fsockopen().

 A simple example follows:

Example 1. Reading a file line by line

$fd = fopen ("/tmp/inputfile.txt", "r");

while (!feof ($fd)) {

 $buffer = fgets($fd, 4096);

 echo $buffer;

}

fclose ($fd);

 See also fread(), fopen(), popen(), fgetc(), and fsockopen().

fgetss (PHP3 , PHP4)

 Gets line from file pointer and strip HTML tags

string fgetss (int fp, int length [, string allowable_tags])

 Identical to fgets(), except that fgetss attempts to strip any HTML and PHP tags from the text it reads.

 You can use the optional third parameter to specify tags which should not be stripped.

Note: allowable_tags was added in PHP 3.0.13, PHP4B3.

 See also fgets(), fopen(), fsockopen(), popen(), and strip_tags().

file (PHP3 , PHP4)

Reads entire file into an array

array file (string filename [, int use_include_path])

 Identical to readfile(), except that file() returns the file in an array. Each element of the array corresponds to a line in the file, with the newline still attached.

 You can use the optional second parameter and set it to "1", if you want to search for the file in the include_path, too.

<?php

// get a web page into an array and print it out

$fcontents = file ('http://www.php.net');

while (list ($line_num, $line) = each ($fcontents)) {

 echo "Line $line_num: " . htmlspecialchars ($line) . "
\n";

}

// get a web page into a string

$fcontents = join ('', file ('http://www.php.net'));

?>

 See also readfile(), fopen(), and popen().

file_exists (PHP3 , PHP4)

Checks whether a file exists

int file_exists (string filename)

 Returns true if the file specified by filename exists; false otherwise.

 file_exists() will not work on remote files; the file to be examined must be accessible via the server's filesystem.

 The results of this function are cached. See clearstatcache() for more details.

fileatime (PHP3 , PHP4)

Gets last access time of file

int fileatime (string filename)

 Returns the time the file was last accessed, or false in case of an error. The time is returned as a Unix timestamp.

 The results of this function are cached. See clearstatcache() for more details.

 Note: The atime of a file is supposed to change whenever the data blocks of a file are being read. This can be costly performancewise when an appliation regularly accesses a very large number of files or directories. Some Unix filesystems can be mounted with atime updates disabled to increase the performance of such applications; USENET news spools are a common example. On such filesystems this function will be useless.

filectime (PHP3 , PHP4)

Gets inode change time of file

int filectime (string filename)

 Returns the time the file was last changed, or false in case of an error. The time is returned as a Unix timestamp.

 The results of this function are cached. See clearstatcache() for more details.

Note: In most Unix filesystem, a file is considered changed, when it's Inode data is changed, that is, when the permissions, the owner, the group or other metadata from the Inode is written to. See also filemtime() (this is what you want to use when you want to create "Last Modified" footers on web pages) and fileatime().

Note: In some Unix texts the ctime of a file is being referred to as the creation time of the file. This is wrong. There is no creation time for Unix files in most Unix filesystems.

filegroup (PHP3 , PHP4)

Gets file group

int filegroup (string filename)

 Returns the group ID of the owner of the file, or false in case of an error. The group ID is returned in numerical format, use posix_getgrgid() to resolve it to a group name.

 The results of this function are cached. See clearstatcache() for more details.

Note: This function does not work on Windows systems

fileinode (PHP3 , PHP4)

Gets file inode

int fileinode (string filename)

 Returns the inode number of the file, or false in case of an error.

 The results of this function are cached. See clearstatcache() for more details.

Note: This function does not work on Windows systems

filemtime (PHP3 , PHP4)

Gets file modification time

int filemtime (string filename)

 Returns the time the file was last modified, or false in case of an error. The time is returned as a Unix timestamp.

 The results of this function are cached. See clearstatcache() for more details.

Note: This function returns the time when the data blocks of a file were being written to, that is, the time when the content of the file was changed. Use date() on the result of this function to get a printable modification date for use in page footers.

fileowner (PHP3 , PHP4)

Gets file owner

int fileowner (string filename)

 Returns the user ID of the owner of the file, or false in case of an error. The user ID is returned in numerical format, use posix_getpwuid() to resolve it to a username.

 The results of this function are cached. See clearstatcache() for more details.

Note: This function does not work on Windows systems

fileperms (PHP3 , PHP4)

Gets file permissions

int fileperms (string filename)

 Returns the permissions on the file, or false in case of an error.

 The results of this function are cached. See clearstatcache() for more details.

filesize (PHP3 , PHP4)

Gets file size

int filesize (string filename)

 Returns the size of the file, or false in case of an error.

 The results of this function are cached. See clearstatcache() for more details.

filetype (PHP3 , PHP4)

Gets file type

string filetype (string filename)

 Returns the type of the file. Possible values are fifo, char, dir, block, link, file, and unknown.

 Returns false if an error occurs.

 The results of this function are cached. See clearstatcache() for more details.

flock (PHP3 >= 3.0.7, PHP4)

Portable advisory file locking

bool flock (int fp, int operation [, int wouldblock])

 PHP supports a portable way of locking complete files in an advisory way (which means all accessing programs have to use the same way of locking or it will not work).

 flock() operates on fp which must be an open file pointer. operation is one of the following values:

•
 To acquire a shared lock (reader), set operation to LOCK_SH (set to 1 prior to PHP 4.0.1).

•
 To acquire an exclusive lock (writer), set operation to LOCK_EX (set to 2 prior to PHP 4.0.1).

•
 To release a lock (shared or exclusive), set operation to LOCK_UN (set to 3 prior to PHP 4.0.1).

•
 If you don't want flock() to block while locking, add LOCK_NB (4 prior to PHP 4.0.1) to operation.

 Flock() allows you to perform a simple reader/writer model which can be used on virtually every platform (including most Unices and even Windows). The optional 3rd argument is set to true if the lock would block (EWOULDBLOCK errno condition)

 Flock() returns true on success and false on error (e.g. when a lock could not be acquired).

fopen (PHP3 , PHP4)

Opens file or URL

int fopen (string filename, string mode [, int use_include_path])

 If filename begins with "http://" (not case sensitive), an HTTP 1.0 connection is opened to the specified server and a file pointer is returned to the beginning of the text of the response. A 'Host:' header is sent with the request in order to handle name-based virtual hosts.

 Does not handle HTTP redirects, so you must include trailing slashes on directories.

 If filename begins with "ftp://" (not case sensitive), an ftp connection to the specified server is opened and a pointer to the requested file is returned. If the server does not support passive mode ftp, this will fail. You can open files for either reading and writing via ftp (but not both simultaneously).

 If filename is one of "php://stdin", "php://stdout", or "php://stderr", the corresponding stdio stream will be opened. (This was introduced in PHP 3.0.13; in earlier versions, a filename such as "/dev/stdin" or "/dev/fd/0" must be used to access the stdio streams.)

 If filename begins with anything else, the file will be opened from the filesystem, and a file pointer to the file opened is returned.

 If the open fails, the function returns false.

 mode may be any of the following:

•
 'r' - Open for reading only; place the file pointer at the beginning of the file.

•
 'r+' - Open for reading and writing; place the file pointer at the beginning of the file.

•
 'w' - Open for writing only; place the file pointer at the beginning of the file and truncate the file to zero length. If the file does not exist, attempt to create it.

•
 'w+' - Open for reading and writing; place the file pointer at the beginning of the file and truncate the file to zero length. If the file does not exist, attempt to create it.

•
 'a' - Open for writing only; place the file pointer at the end of the file. If the file does not exist, attempt to create it.

•
 'a+' - Open for reading and writing; place the file pointer at the end of the file. If the file does not exist, attempt to create it.

 The mode may contain the letter 'b'. This is useful only on systems which differentiate between binary and text files (i.e., it's useless on Unix). If not needed, this will be ignored.

 You can use the optional third parameter and set it to "1", if you want to search for the file in the include_path, too.

Example 1. Fopen() example

$fp = fopen ("/home/rasmus/file.txt", "r");

$fp = fopen ("/home/rasmus/file.gif", "wb");

$fp = fopen ("http://www.php.net/", "r");

$fp = fopen ("ftp://user:password@example.com/", "w");

 If you are experiencing problems with reading and writing to files and you're using the server module version of PHP, remember to make sure that the files and directories you're using are accessible to the server process.

 On the Windows platform, be careful to escape any backslashes used in the path to the file, or use forward slashes.

$fp = fopen ("c:\\data\\info.txt", "r");

 See also fclose(), fsockopen(), and popen().

fpassthru (PHP3 , PHP4)

 Output all remaining data on a file pointer

int fpassthru (int fp)

 Reads to EOF on the given file pointer and writes the results to standard output.

 If an error occurs, fpassthru() returns false.

 The file pointer must be valid, and must point to a file successfully opened by fopen(), popen(), or fsockopen(). The file is closed when fpassthru() is done reading it (leaving fp useless).

 If you just want to dump the contents of a file to stdout you may want to use the readfile(), which saves you the fopen() call.

 See also readfile(), fopen(), popen(), and fsockopen()

fputs (PHP3 , PHP4)

Writes to a file pointer

int fputs (int fp, string str [, int length])

 Fputs() is an alias to fwrite(), and is identical in every way. Note that the length parameter is optional and if not specified the entire string will be written.

fread (PHP3 , PHP4)

Binary-safe file read

string fread (int fp, int length)

 Fread() reads up to length bytes from the file pointer referenced by fp. Reading stops when length bytes have been read or EOF is reached, whichever comes first.

// get contents of a file into a string

$filename = "/usr/local/something.txt";

$fd = fopen ($filename, "r");

$contents = fread ($fd, filesize ($filename));

fclose ($fd);

 See also fwrite(), fopen(), fsockopen(), popen(), fgets(), fgetss(), fscanf(), file(), and fpassthru().

fscanf (PHP4 >= 4.0.1)

Parses input from a file according to a format

mixed fscanf (int handle, string format [, string var1...])

 The function fscanf() is similar to sscanf(), but it takes its input from a file associated with handle and interprets the input according to the specified format. If only two parameters were passed to this function, the values parsed will be returned as an array. Otherwise, if optional parameters are passed, the function will return the number of assigned values. The optional parameters must be passed by reference.

Example 1. Fscanf() Example

$fp = fopen ("users.txt","r");

while ($userinfo = fscanf ($fp, "%s\t%s\t%s\n")) {

 list ($name, $profession, $countrycode) = $userinfo;

 //... do something with the values

}

fclose($fp);

Example 2. users.txt

javier argonaut pe

hiroshi sculptor jp

robert slacker us

luigi florist it

 See also fread(), fgets(), fgetss(), sscanf(), printf(), and sprintf().

fseek (PHP3 , PHP4)

Seeks on a file pointer

int fseek (int fp, int offset [, int whence])

 Sets the file position indicator for the file referenced by fp.The new position, measured in bytes from the beginning of the file, is obtained by adding offset to the position specified by whence, whose values are defined as follows:

	SEEK_SET - Set position equal to offset bytes.

	SEEK_CUR - Set position to current location plus offset.

	SEEK_END - Set position to end-of-file plus offset.

If whence is not specified, it is assumed to be SEEK_SET.

 Upon success, returns 0; otherwise, returns -1. Note that seeking past EOF is not considered an error.

 May not be used on file pointers returned by fopen() if they use the "http://" or "ftp://" formats.

Note: The whence argument was added after PHP 4.0 RC1.

 See also ftell() and rewind().

fstat (PHP4 >= 4.0RC1)

 Gets information about a file using an open file pointer

array fstat (int fp)

 Gathers the statistics of the file opened by the file pointer fp. This function is similar to the stat() function except that it operates on an open file pointer instead of a filename.

 Returns an array with the statistics of the file with the following elements:

1.
device

2.
inode

3.
number of links

4.
user id of owner

5.
group id owner

6.
device type if inode device *

7.
size in bytes

8.
time of last access

9.
time of last modification

10.
time of last change

11.
blocksize for filesystem I/O *

12.
number of blocks allocated

 * - only valid on systems supporting the st_blksize type--other systems (i.e. Windows) return -1

 The results of this function are cached. See clearstatcache() for more details.

ftell (PHP3 , PHP4)

Tells file pointer read/write position

int ftell (int fp)

 Returns the position of the file pointer referenced by fp; i.e., its offset into the file stream.

 If an error occurs, returns false.

 The file pointer must be valid, and must point to a file successfully opened by fopen() or popen().

 See also fopen(), popen(), fseek() and rewind().

ftruncate (PHP4 >= 4.0RC1)

 Truncates a file to a given length.

int ftruncate (int fp, int size)

 Takes the filepointer, fp, and truncates the file to length, size. This function returns true on success and false on failure.

fwrite (PHP3 , PHP4)

Binary-safe file write

int fwrite (int fp, string string [, int length])

 fwrite() writes the contents of string to the file stream pointed to by fp. If the length argument is given, writing will stop after length bytes have been written or the end of string is reached, whichever comes first.

 Note that if the length argument is given, then the magic_quotes_runtime configuration option will be ignored and no slashes will be stripped from string.

 See also fread(), fopen(), fsockopen(), popen(), and fputs().

set_file_buffer (PHP3 >= 3.0.8, PHP4 >= 4.0.1)

 Sets file buffering on the given file pointer

int set_file_buffer (int fp, int buffer)

 set_file_buffer() sets the buffering for write operations on the given filepointer fp to buffer bytes. If buffer is 0 then write operations are unbuffered.

 The function returns 0 on success, or EOF if the request cannot be honored.

 Note that the default for any fopen with calling set_file_buffer is 8K.

 See also fopen().

is_dir (PHP3 , PHP4)

Tells whether the filename is a directory

bool is_dir (string filename)

 Returns true if the filename exists and is a directory.

 The results of this function are cached. See clearstatcache() for more details.

 See also is_file() and is_link().

is_executable (PHP3 , PHP4)

Tells whether the filename is executable

bool is_executable (string filename)

 Returns true if the filename exists and is executable.

 The results of this function are cached. See clearstatcache() for more details.

 See also is_file() and is_link().

is_file (PHP3 , PHP4)

 Tells whether the filename is a regular file

bool is_file (string filename)

 Returns true if the filename exists and is a regular file.

 The results of this function are cached. See clearstatcache() for more details.

 See also is_dir() and is_link().

is_link (PHP3 , PHP4)

 Tells whether the filename is a symbolic link

bool is_link (string filename)

 Returns true if the filename exists and is a symbolic link.

 The results of this function are cached. See clearstatcache() for more details.

 See also is_dir() and is_file().

Note: This function does not work on Windows systems

is_readable (PHP3 , PHP4)

 Tells whether the filename is readable

bool is_readable (string filename)

 Returns true if the filename exists and is readable.

 Keep in mind that PHP may be accessing the file as the user id that the web server runs as (often 'nobody'). Safe mode limitations are not taken into account.

 The results of this function are cached. See clearstatcache() for more details.

 See also is_writeable().

is_writeable (PHP3 , PHP4)

Tells whether the filename is writeable

bool is_writeable (string filename)

 Returns true if the filename exists and is writeable. The filename argument may be a directory name allowing you to check if a directory is writeable.

 Keep in mind that PHP may be accessing the file as the user id that the web server runs as (often 'nobody'). Safe mode limitations are not taken into account.

 The results of this function are cached. See clearstatcache() for more details.

 See also is_readable().

link (PHP3 , PHP4)

Create a hard link

int link (string target, string link)

 Link() creates a hard link.

 See also the symlink() to create soft links, and readlink() along with linkinfo().

Note: This function does not work on Windows systems

linkinfo (PHP3 , PHP4)

Gets information about a link

int linkinfo (string path)

 Linkinfo() returns the st_dev field of the UNIX C stat structure returned by the lstat system call. This function is used to verify if a link (pointed to by path) really exists (using the same method as the S_ISLNK macro defined in stat.h). Returns 0 or FALSE in case of error.

 See also symlink(), link(), and readlink().

Note: This function does not work on Windows systems

mkdir (PHP3 , PHP4)

Makes directory

int mkdir (string pathname, int mode)

 Attempts to create the directory specified by pathname.

 Note that you probably want to specify the mode as an octal number, which means it should have a leading zero.

mkdir ("/path/to/my/dir", 0700);

 Returns true on success and false on failure.

 See also rmdir().

pclose (PHP3 , PHP4)

Closes process file pointer

int pclose (int fp)

 Closes a file pointer to a pipe opened by popen().

 The file pointer must be valid, and must have been returned by a successful call to popen().

 Returns the termination status of the process that was run.

 See also popen().

popen (PHP3 , PHP4)

Opens process file pointer

int popen (string command, string mode)

 Opens a pipe to a process executed by forking the command given by command.

 Returns a file pointer identical to that returned by fopen(), except that it is unidirectional (may only be used for reading or writing) and must be closed with pclose(). This pointer may be used with fgets(), fgetss(), and fputs().

 If an error occurs, returns false.

$fp = popen ("/bin/ls", "r");

 See also pclose().

readfile (PHP3 , PHP4)

Outputs a file

int readfile (string filename [, int use_include_path])

 Reads a file and writes it to standard output.

 Returns the number of bytes read from the file. If an error occurs, false is returned and unless the function was called as @readfile, an error message is printed.

 If filename begins with "http://" (not case sensitive), an HTTP 1.0 connection is opened to the specified server and the text of the response is written to standard output.

 Does not handle HTTP redirects, so you must include trailing slashes on directories.

 If filename begins with "ftp://" (not case sensitive), an ftp connection to the specified server is opened and the requested file is written to standard output. If the server does not support passive mode ftp, this will fail.

 If filename begins with neither of these strings, the file will be opened from the filesystem and its contents written to standard output.

 You can use the optional second parameter and set it to "1", if you want to search for the file in the include_path, too.

 See also fpassthru(), file(), fopen(), include(), require(), and virtual().

readlink (PHP3 , PHP4)

Returns the target of a symbolic link

string readlink (string path)

 Readlink() does the same as the readlink C function and returns the contents of the symbolic link path or 0 in case of error.

 See also symlink(), readlink() and linkinfo().

Note: This function does not work on Windows systems

rename (PHP3 , PHP4)

Renames a file

int rename (string oldname, string newname)

 Attempts to rename oldname to newname.

 Returns true on success and false on failure.

rewind (PHP3 , PHP4)

Rewind the position of a file pointer

int rewind (int fp)

 Sets the file position indicator for fp to the beginning of the file stream.

 If an error occurs, returns 0.

 The file pointer must be valid, and must point to a file successfully opened by fopen().

 See also fseek() and ftell().

rmdir (PHP3 , PHP4)

Removes directory

int rmdir (string dirname)

 Attempts to remove the directory named by pathname. The directory must be empty, and the relevant permissions must permit. this.

 If an error occurs, returns 0.

 See also mkdir().

stat (PHP3 , PHP4)

Gives information about a file

array stat (string filename)

 Gathers the statistics of the file named by filename.

 Returns an array with the statistics of the file with the following elements:

1.
device

2.
inode

3.
inode protection mode

4.
number of links

5.
user id of owner

6.
group id owner

7.
device type if inode device *

8.
size in bytes

9.
time of last access

10.
time of last modification

11.
time of last change

12.
blocksize for filesystem I/O *

13.
number of blocks allocated

 * - only valid on systems supporting the st_blksize type--other systems (i.e. Windows) return -1

 The results of this function are cached. See clearstatcache() for more details.

lstat (PHP3 >= 3.0.4, PHP4)

 Gives information about a file or symbolic link

array lstat (string filename)

 Gathers the statistics of the file or symbolic link named by filename. This function is identical to the stat() function except that if the filename parameter is a symbolic link, the status of the symbolic link is returned, not the status of the file pointed to by the symbolic link.

 Returns an array with the statistics of the file with the following elements:

1.
device

2.
inode

3.
number of links

4.
user id of owner

5.
group id owner

6.
device type if inode device *

7.
size in bytes

8.
time of last access

9.
time of last modification

10.
time of last change

11.
blocksize for filesystem I/O *

12.
number of blocks allocated

 * - only valid on systems supporting the st_blksize type--other systems (i.e. Windows) return -1

 The results of this function are cached. See clearstatcache() for more details.

realpath (PHP4 >= 4.0b4)

Returns canonicalized absolute pathname

string realpath (string path)

 realpath() expands all symbolic links and resolves references to '/./', '/../' and extra '/' characters in the input path and return the canonicalized absolute pathname. The resulting path will have no symbolic link, '/./' or '/../' components.

Example 1. realpath() example

$real_path = realpath ("../../index.php");

symlink (PHP3 , PHP4)

Creates a symbolic link

int symlink (string target, string link)

 symlink() creates a symbolic link from the existing target with the specified name link.

 See also link() to create hard links, and readlink() along with linkinfo().

Note: This function does not work on Windows systems.

tempnam (PHP3 , PHP4)

Creates unique file name

string tempnam (string dir, string prefix)

 Creates a unique temporary filename in the specified directory. If the directory does not exist, tempnam() may generate a filename in the system's temporary directory.

 The behaviour of the tempnam() function is system dependent. On Windows the TMP environment variable will override the dir parameter, on Linux the TMPDIR environment variable has precedence, while SVR4 will always use your dir parameter if the directory it points to exists. Consult your system documentation on the tempnam(3) function if in doubt.

 Returns the new temporary filename, or the null string on failure.

Example 1. Tempnam() example

$tmpfname = tempnam ("/tmp", "FOO");

touch (PHP3 , PHP4)

Sets modification time of file

int touch (string filename [, int time])

 Attempts to set the modification time of the file named by filename to the value given by time. If the option time is not given, uses the present time.

 If the file does not exist, it is created.

 Returns true on success and false otherwise.

Example 1. Touch() example

if (touch ($FileName)) {

 print "$FileName modification time has been

 changed to todays date and time";

} else {

 print "Sorry Could Not change modification time of $FileName";

}

umask (PHP3 , PHP4)

Changes the current umask

int umask (int mask)

 Umask() sets PHP's umask to mask & 0777 and returns the old umask. When PHP is being used as a server module, the umask is restored when each request is finished.

 Umask() without arguments simply returns the current umask.

unlink (PHP3 , PHP4)

Deletes a file

int unlink (string filename)

 Deletes filename. Similar to the Unix C unlink() function.

 Returns 0 or FALSE on an error.

 See also rmdir() for removing directories.

Note: This function may not work on Windows systems.

XXI. Forms Data Format functions

 Forms Data Format (FDF) is a format for handling forms within PDF documents. You should read the documentation at http://partners.adobe.com/asn/developer/acrosdk/forms.html for more information on what FDF is and how it is used in general.

Note: Currently Adobe only provides a libc5 compatible version for Linux. Tests with glibc2 resulted in a segmentation fault. If somebody is able to make it work, please comment on this page.

Note: If you run into problems configuring php with fdftk support, check whether the header file FdfTk.h and the library libFdfTk.so are at the right place. They should be in fdftk-dir/include and fdftk-dir/lib. This will not be the case if you just unpack the FdfTk distribution.

 The general idea of FDF is similar to HTML forms. The diffence is basically the format how filled in data is transmitted to the server when the submit button is pressed (this is actually the Form Data Format) and the format of the form itself (which is the Portable Document Format, PDF). Processing the FDF data is one of the features provided by the fdf functions. But there is more. One may as well take an existing PDF form and populated the input fields with data without modifying the form itself. In such a case one would create a FDF document (fdf_create()) set the values of each input field (fdf_set_value()) and associate it with a PDF form (fdf_set_file()). Finally it has to be sent to the browser with MimeType application/vnd.fdf. The Acrobat reader plugin of your browser recognizes the MimeType, reads the associated PDF form and fills in the data from the FDF document.

 The following examples shows just the evaluation of form data.

Example 1. Evaluating a FDF document

<?php

// Save the FDF data into a temp file

$fdffp = fopen("test.fdf", "w");

fwrite($fdffp, $HTTP_FDF_DATA, strlen($HTTP_FDF_DATA));

fclose($fdffp);

// Open temp file and evaluate data

// The pdf form contained several input text fields with the names

// volume, date, comment, publisher, preparer, and two checkboxes

// show_publisher and show_preparer.

$fdf = fdf_open("test.fdf");

$volume = fdf_get_value($fdf, "volume");

echo "The volume field has the value '$volume'
";

$date = fdf_get_value($fdf, "date");

echo "The date field has the value '$date'
";

$comment = fdf_get_value($fdf, "comment");

echo "The comment field has the value '$comment'
";

if(fdf_get_value($fdf, "show_publisher") == "On") {

 $publisher = fdf_get_value($fdf, "publisher");

 echo "The publisher field has the value '$publisher'
";

} else

 echo "Publisher shall not be shown.
";

if(fdf_get_value($fdf, "show_preparer") == "On") {

 $preparer = fdf_get_value($fdf, "preparer");

 echo "The preparer field has the value '$preparer'
";

} else

 echo "Preparer shall not be shown.
";

fdf_close($fdf);

?>

fdf_open (PHP3 >= 3.0.6, PHP4)

Open a FDF document

int fdf_open (string filename)

 The fdf_open() function opens a file with form data. This file must contain the data as returned from a PDF form. Currently, the file has to be created 'manually' by using fopen() and writing the content of HTTP_FDF_DATA with fwrite() into it. A mechanism like for HTML form data where for each input field a variable is created does not exist.

Example 1. Accessing the form data

<?php

// Save the FDF data into a temp file

$fdffp = fopen("test.fdf", "w");

fwrite($fdffp, $HTTP_FDF_DATA, strlen($HTTP_FDF_DATA));

fclose($fdffp);

// Open temp file and evaluate data

$fdf = fdf_open("test.fdf");

...

fdf_close($fdf);

?>

 See also fdf_close().

fdf_close (PHP3 >= 3.0.6, PHP4)

Close an FDF document

void fdf_close (int fdf_document)

 The fdf_close() function closes the FDF document.

 See also fdf_open().

fdf_create (PHP3 >= 3.0.6, PHP4)

Create a new FDF document

int fdf_create (void)

 The fdf_create() creates a new FDF document. This function is needed if one would like to populate input fields in a PDF document with data.

Example 1. Populating a PDF document

<?php

$outfdf = fdf_create();

fdf_set_value($outfdf, "volume", $volume, 0);

fdf_set_file($outfdf, "http:/testfdf/resultlabel.pdf");

fdf_save($outfdf, "outtest.fdf");

fdf_close($outfdf);

Header("Content-type: application/vnd.fdf");

$fp = fopen("outtest.fdf", "r");

fpassthru($fp);

unlink("outtest.fdf");

?>

 See also fdf_close(), fdf_save(), fdf_open().

fdf_save (PHP3 >= 3.0.6, PHP4)

Save a FDF document

int fdf_save (string filename)

 The fdf_save() function saves a FDF document. The FDF Toolkit provides a way to output the document to stdout if the parameter filename is '.'. This does not work if PHP is used as an apache module. In such a case one will have to write to a file and use e.g. fpassthru(). to output it.

 See also fdf_close() and example for fdf_create().

fdf_get_value (PHP3 >= 3.0.6, PHP4)

Get the value of a field

string fdf_get_value (int fdf_document, string fieldname)

 The fdf_get_value() function returns the value of a field.

 See also fdf_set_value().

fdf_set_value (PHP3 >= 3.0.6, PHP4)

Set the value of a field

void fdf_set_value (int fdf_document, string fieldname, string value, int isName)

 The fdf_set_value() function sets the value of a field. The last parameter determines if the field value is to be converted to a PDF Name (isName = 1) or set to a PDF String (isName = 0).

 See also fdf_get_value().

fdf_next_field_name (PHP3 >= 3.0.6, PHP4)

Get the next field name

string fdf_next_field_name (int fdf_document, string fieldname)

 The fdf_next_field_name() function returns the name of the field after the field in fieldname or the field name of the first field if the second paramter is NULL.

 See also fdf_set_field(), fdf_get_field().

fdf_set_ap (PHP3 >= 3.0.6, PHP4)

Set the appearance of a field

void fdf_set_ap (int fdf_document, string field_name, int face, string filename, int page_number)

 The fdf_set_ap() function sets the appearance of a field (i.e. the value of the /AP key). The possible values of face are 1=FDFNormalAP, 2=FDFRolloverAP, 3=FDFDownAP.

fdf_set_status (PHP3 >= 3.0.6, PHP4)

Set the value of the /STATUS key

void fdf_set_status (int fdf_document, string status)

 The fdf_set_status() sets the value of the /STATUS key.

 See also fdf_get_status().

fdf_get_status (PHP3 >= 3.0.6, PHP4)

Get the value of the /STATUS key

string fdf_get_status (int fdf_document)

 The fdf_get_status() returns the value of the /STATUS key.

 See also fdf_set_status().

fdf_set_file (PHP3 >= 3.0.6, PHP4)

Set the value of the /F key

void fdf_set_file (int fdf_document, string filename)

 The fdf_set_file() sets the value of the /F key. The /F key is just a reference to a PDF form which is to be populated with data. In a web environment it is a URL (e.g. http:/testfdf/resultlabel.pdf).

 See also fdf_get_file() and example for fdf_create().

fdf_get_file (PHP3 >= 3.0.6, PHP4)

Get the value of the /F key

string fdf_get_file (int fdf_document)

 The fdf_set_file() returns the value of the /F key.

 See also fdf_set_file().

XXII. FTP functions

 FTP stands for File Transfer Protocol.

 The following constants are defined when using the FTP module: FTP_ASCII, and FTP_BINARY.

ftp_connect (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Opens up an FTP connection

int ftp_connect (string host [, int port])

 Returns a FTP stream on success, false on error.

 ftp_connect() opens up a FTP connection to the specified host. The port parameter specifies an alternate port to connect to. If it is omitted or zero, then the default FTP port, 21, will be used.

ftp_login (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Logs in an FTP connection

int ftp_login (int ftp_stream, string username, string password)

 Returns true on success, false on error.

 Logs in the given FTP stream.

ftp_pwd (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Returns the current directory name

int ftp_pwd (int ftp_stream)

 Returns the current directory, or false on error.

ftp_cdup (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Changes to the parent directory

int ftp_cdup (int ftp_stream)

 Returns true on success, false on error.

 Changes to the parent directory.

ftp_chdir (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Changes directories on a FTP server

int ftp_chdir (int ftp_stream, string directory)

 Returns true on success, false on error.

 Changes to the specified directory.

ftp_mkdir (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Creates a directory

string ftp_mkdir (int ftp_stream, string directory)

 Returns the newly created directory name on success, false on error.

 Creates the specified directory.

ftp_rmdir (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Removes a directory

int ftp_rmdir (int ftp_stream, string directory)

 Returns true on success, false on error.

 Removes the specified directory.

ftp_nlist (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Returns a list of files in the given directory.

int ftp_nlist (int ftp_stream, string directory)

 Returns an array of filenames on success, false on error.

ftp_rawlist (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Returns a detailed list of files in the given directory.

int ftp_rawlist (int ftp_stream, string directory)

 ftp_rawlist() executes the FTP LIST command, and returns the result as an array. Each array element corresponds to one line of text. The output is not parsed in any way. The system type identifier returned by ftp_systype() can be used to determine how the results should be interpreted.

ftp_systype (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Returns the system type identifier of the remote FTP server.

int ftp_systype (int ftp_stream)

 Returns the remote system type, or false on error.

ftp_pasv (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Turns passive mode on or off.

int ftp_pasv (int ftp_stream, int pasv)

 Returns true on success, false on error.

 ftp_pasv() turns on passive mode if the pasv parameter is true (it turns off passive mode if pasv is false.) In passive mode, data connections are initiated by the client, rather than by the server.

ftp_get (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Downloads a file from the FTP server.

int ftp_get (int ftp_stream, string local_file, string remote_file, int mode)

 Returns true on success, false on error.

 ftp_get() retrieves remote_file from the FTP server, and saves it to local_file locally. The transfer mode specified must be either FTP_ASCII or FTP_BINARY.

ftp_fget (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Downloads a file from the FTP server and saves to an open file.

int ftp_fget (int ftp_stream, int fp, string remote_file, int mode)

 Returns true on success, false on error.

 ftp_fget() retrieves remote_file from the FTP server, and writes it to the given file pointer, fp. The transfer mode specified must be either FTP_ASCII or FTP_BINARY.

ftp_put (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Uploads a file to the FTP server.

int ftp_put (int ftp_stream, string remote_file, string local_file, int mode)

 Returns true on success, false on error.

 ftp_put() stores local_file on the FTP server, as remote_file. The transfer mode specified must be either FTP_ASCII or FTP_BINARY.

ftp_fput (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Uploads from an open file to the FTP server.

int ftp_fput (int ftp_stream, string remote_file, int fp, int mode)

 Returns true on success, false on error.

 ftp_fput() uploads the data from the file pointer fp until end of file. The results are stored in remote_file on the FTP server. The transfer mode specified must be either FTP_ASCII or FTP_BINARY.

ftp_size (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Returns the size of the given file.

int ftp_size (int ftp_stream, string remote_file)

 Returns the file size on success, or -1 on error.

 ftp_size() returns the size of a file. If an error occurs, of if the file does not exist, -1 is returned. Not all servers support this feature.

ftp_mdtm (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Returns the last modified time of the given file.

int ftp_mdtm (int ftp_stream, string remote_file)

 Returns a UNIX timestamp on success, or -1 on error.

 ftp_mdtm() checks the last-modified time for a file, and returns it as a UNIX timestamp. If an error occurs, or the file does not exist, -1 is returned. Note that not all servers support this feature.

ftp_rename (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Renames a file on the ftp server.

int ftp_rename (int ftp_stream, string from, string to)

 Returns true on success, false on error.

 ftp_rename() renames the file specified by from to the new name to

ftp_delete (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Deletes a file on the ftp server.

int ftp_delete (int ftp_stream, string path)

 Returns true on success, false on error.

 ftp_delete() deletes the file specified by path from the FTP server.

ftp_site (PHP3 >= 3.0.15, PHP4 >= 4.0RC1)

Sends a SITE command to the server.

int ftp_site (int ftp_stream, string cmd)

 Returns true on success, false on error.

 ftp_site() sends the command specified by cmd to the FTP server. SITE commands are not standardized, and vary from server to server. They are useful for handling such things as file permissions and group membership.

ftp_quit (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Closes an FTP connection

int ftp_quit (int ftp_stream)

 ftp_connect() closes ftp_stream.

XXIII. GNU Gettext

 The gettext functions implement a NLS (Native Language Support) API which can be used to internationalize your PHP applications. Please see the GNU gettext documentation for a thorough explanation of these functions.

bindtextdomain (PHP3 >= 3.0.7, PHP4)

Sets the path for a domain

string bindtextdomain (string domain, string directory)

 The bindtextdomain() function sets the path for a domain.

dcgettext (PHP3 >= 3.0.7, PHP4)

Overrides the domain for a single lookup

string dcgettext (string domain, string message, int category)

 This function allows you to override the current domain for a single message lookup. It also allows you to specify a category.

dgettext (PHP3 >= 3.0.7, PHP4)

Override the current domain

string dgettext (string domain, string message)

 The dgettext() function allows you to override the current domain for a single message lookup.

gettext (PHP3 >= 3.0.7, PHP4)

Lookup a message in the current domain

string gettext (string message)

 This function returns a translated string if one is found in the translation table, or the submitted message if not found. You may use an underscore character as an alias to this function.

Example 1. Gettext()-check

<?php

// Set language to German

putenv ("LANG=de");

// Specify location of translation tables

bindtextdomain ("myPHPApp", "./locale");

// Choose domain

textdomain ("myPHPApp");

// Print a test message

print (gettext ("Welcome to My PHP Application"));

?>

textdomain (PHP3 >= 3.0.7, PHP4)

Sets the default domain

int textdomain ([string library])

 This function sets the domain to search within when calls are made to gettext(), usually the named after an application. The previous default domain is returned. Call it with no parameters to get the current setting without changing it.

XXIV. HTTP functions

 These functions let you manipulate the output sent back to the remote browser right down to the HTTP protocol level.

header (PHP3 , PHP4)

Send a raw HTTP header

int header (string string)

 The Header() function is used at the top of an HTML file to send raw HTTP header strings. See the HTTP 1.1 Specification (http://www.w3.org/Protocols/rfc2616/rfc2616) for more information on raw http headers. Note: Remember that the Header() function must be called before any actual output is sent either by normal HTML tags or from PHP. It is a very common error to read code with include() or with auto_prepend and have spaces or empty lines in this code that force output before header() is called.

 There are two special-case header calls. The first is the "Location" header. Not only does it send this header back to the browser, it also returns a REDIRECT status code to Apache. From a script writer's point of view this should not be important, but for people who understand Apache internals it is important to understand.

header ("Location: http://www.php.net"); /* Redirect browser

 to PHP web site */

exit; /* Make sure that code below does

 not get executed when we redirect. */

 The second special-case is any header that starts with the string, "HTTP/" (case is not significant). For example, if you have your ErrorDocument 404 Apache directive pointed to a PHP script, it would be a good idea to make sure that your PHP script is actually generating a 404. The first thing you do in your script should then be:

header ("HTTP/1.0 404 Not Found");

 PHP scripts often generate dynamic HTML that must not be cached by the client browser or any proxy caches between the server and the client browser. Many proxies and clients can be forced to disable caching with

header ("Expires: Mon, 26 Jul 1997 05:00:00 GMT"); // Date in the past

header ("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");

 // always modified

header ("Cache-Control: no-cache, must-revalidate"); // HTTP/1.1

header ("Pragma: no-cache"); // HTTP/1.0

 See also headers_sent()

header_sent (unknown)

Returns true if headers have been sent

boolean headers_sent (void)

 This function returns true if the HTTP headers have already been sent, false otherwise.

 See also header()

setcookie (PHP3 , PHP4)

Send a cookie

int setcookie (string name [, string value [, int expire [, string path [, string domain [, int secure]]]]])

 Setcookie() defines a cookie to be sent along with the rest of the header information. Cookies must be sent before any other headers are sent (this is a restriction of cookies, not PHP). This requires you to place calls to this function before any <html> or <head> tags.

 All the arguments except the name argument are optional. If only the name argument is present, the cookie by that name will be deleted from the remote client. You may also replace any argument with an empty string ("") in order to skip that argument. The expire and secure arguments are integers and cannot be skipped with an empty string. Use a zero (0) instead. The expire argument is a regular Unix time integer as returned by the time() or mktime() functions. The secure indicates that the cookie should only be transmitted over a secure HTTPS connection.

 Common Pitfalls:

•
 Cookies will not become visible until the next loading of a page that the cookie should be visible for.

•
 Cookies must be deleted with the same parameters as they were set with.

 In PHP3, multiple calls to setcookie() in the same script will be performed in reverse order. If you are trying to delete one cookie before inserting another you should put the insert before the delete. In PHP4, multiple calls to setcookie() are performed in the order called.

 Some examples follow how to send cookies:

Example 1. Setcookie() send examples

setcookie ("TestCookie", "Test Value");

setcookie ("TestCookie", $value,time()+3600); /* expire in 1 hour */

setcookie ("TestCookie", $value,time()+3600, "/~rasmus/", ".utoronto.ca", 1);

 Examples follow how to delete cookies send in previous example:

Example 2. setcookie() delete examples

setcookie ("TestCookie");

setcookie ("TestCookie", "", time());

setcookie ("TestCookie", "", time(), "/~rasmus/", ".utoronto.ca", 1);

 Note that the value portion of the cookie will automatically be urlencoded when you send the cookie, and when it is received, it is automatically decoded and assigned to a variable by the same name as the cookie name. To see the contents of our test cookie in a script, simply use one of the following examples:

echo $TestCookie;

echo $HTTP_COOKIE_VARS["TestCookie"];

 You may also set array cookies by using array notation in the cookie name. This has the effect of setting as many cookies as you have array elements, but when the cookie is received by your script, the values are all placed in an array with the cookie's name:

setcookie ("cookie[three]", "cookiethree");

setcookie ("cookie[two]", "cookietwo");

setcookie ("cookie[one]", "cookieone");

if (isset ($cookie)) {

 while (list ($name, $value) = each ($cookie)) {

 echo "$name == $value
\n";

 }

}

 For more information on cookies, see Netscape's cookie specification at http://www.netscape.com/newsref/std/cookie_spec.html.

 Microsoft Internet Explorer 4 with Service Pack 1 applied does not correctly deal with cookies that have their path parameter set.

 Netscape Communicator 4.05 and Microsoft Internet Explorer 3.x appear to handle cookies incorrectly when the path and time are not set.

XXV. Hyperwave functions

Introduction

 Hyperwave has been developed at IICM (http://iicm.edu/) in Graz. It started with the name Hyper-G and changed to Hyperwave when it was commercialised (If I remember properly it was in 1996).

 Hyperwave is not free software. The current version, 4.1, is available at www.hyperwave.com (http://www.hyperwave.com/). A time limited version can be ordered for free (30 days).

 Hyperwave is an information system similar to a database (HIS, Hyperwave Information Server). Its focus is the storage and management of documents. A document can be any possible piece of data that may as well be stored in file. Each document is accompanied by its object record. The object record contains meta data for the document. The meta data is a list of attributes which can be extended by the user. Certain attributes are always set by the Hyperwave server, other may be modified by the user. An attribute is a name/value pair of the form name=value. The complete object record contains as many of those pairs as the user likes. The name of an attribute does not have to be unique, e.g. a title may appear several times within an object record. This makes sense if you want to specify a title in several languages. In such a case there is a convention, that each title value is preceded by the two letter language abbreviation followed by a colon, e.g. 'en:Title in English' or 'ge:Titel in deutsch'. Other attributes like a description or keywords are potential candidates. You may also replace the language abbreviation by any other string as long as it separated by colon from the rest of the attribute value.

 Each object record has native a string representation with each name/value pair separated by a newline. The Hyperwave extension also knows a second representation which is an associated array with the attribute name being the key. Multilingual attribute values itself form another associated array with the key being the language abbreviation. Actually any multiple attribute forms an associated array with the string left to the colon in the attribute value being the key. (This is not fully implemented. Only the attributes Title, Description and Keyword are treated properly yet.)

 Besides the documents, all hyper links contained in a document are stored as object records as well. Hyper links which are in a document will be removed from it and stored as individual objects, when the document is inserted into the database. The object record of the link contains information about where it starts and where it ends. In order to gain the original document you will have to retrieve the plain document without the links and the list of links and reinsert them (The functions hw_pipedocument() and hw_gettext() do this for you. The advantage of separating links from the document is obvious. Once a document to which a link is pointing to changes its name, the link can easily be modified accordingly. The document containing the link is not affected at all. You may even add a link to a document without modifying the document itself.

 Saying that hw_pipedocument() and hw_gettext() do the link insertion automatically is not as simple as it sounds. Inserting links implies a certain hierarchy of the documents. On a web server this is given by the file system, but Hyperwave has its own hierarchy and names do not reflect the position of an object in that hierarchy. Therefore creation of links first of all requires a mapping from the Hyperwave hierarchy and namespace into a web hierarchy respective web namespace. The fundamental difference between Hyperwave and the web is the clear distinction between names and hierarchy in Hyperwave. The name does not contain any information about the objects position in the hierarchy. In the web the name also contains the information on where the object is located in the hierarchy. This leads to two possibles ways of mapping. Either the Hyperwave hierarchy and name of the Hyperwave object is reflected in the URL or the name only. To make things simple the second approach is used. Hyperwave object with name 'my_object' is mapped to 'http://host/my_object' disregarding where it resides in the Hyperwave hierarchy. An object with name 'parent/my_object' could be the child of 'my_object' in the Hyperwave hierarchy, though in a web namespace it appears to be just the opposite and the user might get confused. This can only be prevented by selecting reasonable object names.

 Having made this decision a second problem arises. How do you involve PHP? The URL http://host/my_object will not call any PHP script unless you tell your web server to rewrite it to e.g. 'http://host/php3_script/my_object' and the script 'php3_script' evaluates the $PATH_INFO variable and retrieves the object with name 'my_object' from the Hyperwave server. Their is just one little drawback which can be fixed easily. Rewriting any URL would not allow any access to other document on the web server. A PHP script for searching in the Hyperwave server would be impossible. Therefore you will need at least a second rewriting rule to exclude certain URLS like all e.g. starting with http://host/Hyperwave. This is basically sharing of a namespace by the web and Hyperwave server.

 Based on the above mechanism links are insert into documents.

 It gets more complicated if PHP is not run as a server module or CGI script but as a standalone application e.g. to dump the content of the Hyperwave server on a CD-ROM. In such a case it makes sense to retain the Hyperwave hierarchy and map in onto the file system. This conflicts with the object names if they reflect its own hierarchy (e.g. by choosing names including '/'). Therefore '/' has to be replaced by another character, e.g. '_'. to be continued.

 The network protocol to communicate with the Hyperwave server is called HG-CSP (http://www.hyperwave.com/7.17-hg-prot) (Hyper-G Client/Server Protocol). It is based on messages to initiate certain actions, e.g. get object record. In early versions of the Hyperwave Server two native clients (Harmony, Amadeus) were provided for communication with the server. Those two disappeared when Hyperwave was commercialised. As a replacement a so called wavemaster was provided. The wavemaster is like a protocol converter from HTTP to HG-CSP. The idea is to do all the administration of the database and visualisation of documents by a web interface. The wavemaster implements a set of placeholders for certain actions to customise the interface. This set of placeholders is called the PLACE Language. PLACE lacks a lot of features of a real programming language and any extension to it only enlarges the list of placeholders. This has led to the use of JavaScript which IMO does not make life easier.

 Adding Hyperwave support to PHP should fill in the gap of a missing programming language for interface customisation. It implements all the messages as defined by the HG-CSP but also provides more powerful commands to e.g. retrieve complete documents.

 Hyperwave has its own terminology to name certain pieces of information. This has widely been taken over and extended. Almost all functions operate on one of the following data types.

•
 object ID: An unique integer value for each object in the Hyperwave server. It is also one of the attributes of the object record (ObjectID). Object ids are often used as an input parameter to specify an object.

•
 object record: A string with attribute-value pairs of the form attribute=value. The pairs are separated by a carriage return from each other. An object record can easily be converted into an object array with hw_object2array(). Several functions return object records. The names of those functions end with obj.

•
 object array: An associated array with all attributes of an object. The key is the attribute name. If an attribute occurs more than once in an object record it will result in another indexed or associated array. Attributes which are language depended (like the title, keyword, description) will form an associated array with the key set to the language abbreviation. All other multiple attributes will form an indexed array. PHP functions never return object arrays.

•
 hw_document: This is a complete new data type which holds the actual document, e.g. HTML, PDF etc. It is somewhat optimised for HTML documents but may be used for any format.

 Several functions which return an array of object records do also return an associated array with statistical information about them. The array is the last element of the object record array. The statistical array contains the following entries:

Hidden

 Number of object records with attribute PresentationHints set to Hidden.

CollectionHead

 Number of object records with attribute PresentationHints set to CollectionHead.

FullCollectionHead

 Number of object records with attribute PresentationHints set to FullCollectionHead.

CollectionHeadNr

 Index in array of object records with attribute PresentationHints set to CollectionHead.

FullCollectionHeadNr

 Index in array of object records with attribute PresentationHints set to FullCollectionHead.

Total

 Total: Number of object records.

Integration with Apache

 The Hyperwave extension is best used when PHP is compiled as an Apache module. In such a case the underlying Hyperwave server can be hidden from users almost completely if Apache uses its rewriting engine. The following instructions will explain this.

 Since PHP with Hyperwave support built into Apache is intended to replace the native Hyperwave solution based on Wavemaster I will assume that the Apache server will only serve as a Hyperwave web interface. This is not necessary but it simplifies the configuration. The concept is quite simple. First of all you need a PHP script which evaluates the PATH_INFO variable and treats its value as the name of a Hyperwave object. Let's call this script 'Hyperwave'. The URL http://your.hostname/Hyperwave/name_of_object would than return the Hyperwave object with the name 'name_of_object'. Depending on the type of the object the script has to react accordingly. If it is a collection, it will probably return a list of children. If it is a document it will return the mime type and the content. A slight improvement can be achieved if the Apache rewriting engine is used. From the users point of view it would be more straight forward if the URL http://your.hostname/name_of_object would return the object. The rewriting rule is quite easy:

RewriteRule ^/(.*) /usr/local/apache/htdocs/HyperWave/$1 [L]

 Now every URL relates to an object in the Hyperwave server. This causes a simple to solve problem. There is no way to execute a different script, e.g. for searching, than the 'Hyperwave' script. This can be fixed with another rewriting rule like the following:

RewriteRule ^/hw/(.*) /usr/local/apache/htdocs/hw/$1 [L]

 This will reserve the directory /usr/local/apache/htdocs/hw for additional scripts and other files. Just make sure this rule is evaluated before the one above. There is just a little drawback: all Hyperwave objects whose name starts with 'hw/' will be shadowed. So, make sure you don't use such names. If you need more directories, e.g. for images just add more rules or place them all in one directory. Finally, don't forget to turn on the rewriting engine with

RewriteEngine on

 My experiences have shown that you will need the following scripts:

•
 to return the object itself

•
 to allow searching

•
 to identify yourself

•
 to set your profile

•
 one for each additional function like to show the object attributes, to show information about users, to show the status of the server, etc.

Todo

 There are still some things todo:

•
The hw_InsertDocument has to be split into hw_InsertObject() and hw_PutDocument().

•
The names of several functions are not fixed, yet.

•
Most functions require the current connection as its first parameter. This leads to a lot of typing, which is quite often not necessary if there is just one open connection. A default connection will improve this.

•
Conversion form object record into object array needs to handle any multiple attribute.

hw_Array2Objrec (PHP3 >= 3.0.4, PHP4)

convert attributes from object array to object record

strin hw_array2objrec (array object_array)

 Converts an object_array into an object record. Multiple attributes like 'Title' in different languages are treated properly.

 See also hw_objrec2array().

hw_Children (PHP3 >= 3.0.3, PHP4)

object ids of children

array hw_children (int connection, int objectID)

 Returns an array of object ids. Each id belongs to a child of the collection with ID objectID. The array contains all children both documents and collections.

hw_ChildrenObj (PHP3 >= 3.0.3, PHP4)

object records of children

array hw_childrenobj (int connection, int objectID)

 Returns an array of object records. Each object record belongs to a child of the collection with ID objectID. The array contains all children both documents and collections.

hw_Close (PHP3 >= 3.0.3, PHP4)

closes the Hyperwave connection

int hw_close (int connection)

 Returns false if connection is not a valid connection index, otherwise true. Closes down the connection to a Hyperwave server with the given connection index.

hw_Connect (PHP3 >= 3.0.3, PHP4)

opens a connection

int hw_connect (string host, int port, string username, string password)

 Opens a connection to a Hyperwave server and returns a connection index on success, or false if the connection could not be made. Each of the arguments should be a quoted string, except for the port number. The username and password arguments are optional and can be left out. In such a case no identification with the server will be done. It is similar to identify as user anonymous. This function returns a connection index that is needed by other Hyperwave functions. You can have multiple connections open at once. Keep in mind, that the password is not encrypted.

 See also hw_pConnect().

hw_Cp (PHP3 >= 3.0.3, PHP4)

copies objects

int hw_cp (int connection, array object_id_array, int destination id)

 Copies the objects with object ids as specified in the second parameter to the collection with the id destination id.

 The value return is the number of copied objects.

 See also hw_mv().

hw_Deleteobject (PHP3 >= 3.0.3, PHP4)

deletes object

int hw_deleteobject (int connection, int object_to_delete)

 Deletes the object with the given object id in the second parameter. It will delete all instances of the object.

 Returns TRUE if no error occurs otherwise FALSE.

 See also hw_mv().

hw_DocByAnchor (PHP3 >= 3.0.3, PHP4)

object id object belonging to anchor

int hw_docbyanchor (int connection, int anchorID)

 Returns an th object id of the document to which anchorID belongs.

hw_DocByAnchorObj (PHP3 >= 3.0.3, PHP4)

object record object belonging to anchor

string hw_docbyanchorobj (int connection, int anchorID)

 Returns an th object record of the document to which anchorID belongs.

hw_DocumentAttributes (PHP3 >= 3.0.3, PHP4 <= 4.0b1)

object record of hw_document

string hw_documentattributes (int hw_document)

 Returns the object record of the document.

 See also hw_DocumentBodyTag(), hw_DocumentSize().

hw_DocumentBodyTag (PHP3 >= 3.0.3, PHP4 <= 4.0b1)

body tag of hw_document

string hw_documentbodytag (int hw_document)

 Returns the BODY tag of the document. If the document is an HTML document the BODY tag should be printed before the document.

 See also hw_DocumentAttributes(), hw_DocumentSize().

hw_DocumentContent (PHP3 >= 3.0.8)

returns content of hw_document

string hw_documentcontent (int hw_document)

 Returns the content of the document. If the document is an HTML document the content is everything after the BODY tag. Information from the HEAD and BODY tag is in the stored in the object record.

 See also hw_DocumentAttributes(), hw_DocumentSize(), hw_DocumentSetContent().

hw_DocumentSetContent (PHP3 >= 3.0.8)

sets/replaces content of hw_document

string hw_documentsetcontent (int hw_document, string content)

 Sets or replaces the content of the document. If the document is an HTML document the content is everything after the BODY tag. Information from the HEAD and BODY tag is in the stored in the object record. If you provide this information in the content of the document too, the Hyperwave server will change the object record accordingly when the document is inserted. Probably not a very good idea. If this functions fails the document will retain its old content.

 See also hw_DocumentAttributes(), hw_DocumentSize(), hw_DocumentContent().

hw_DocumentSize (PHP3 >= 3.0.3, PHP4 <= 4.0b1)

size of hw_document

int hw_documentsize (int hw_document)

 Returns the size in bytes of the document.

 See also hw_DocumentBodyTag(), hw_DocumentAttributes().

hw_ErrorMsg (PHP3 >= 3.0.3, PHP4)

returns error message

string hw_errormsg (int connection)

 Returns a string containing the last error message or 'No Error'. If false is returned, this function failed. The message relates to the last command.

hw_EditText (PHP3 >= 3.0.3, PHP4)

retrieve text document

int hw_edittext (int connection, int hw_document)

 Uploads the text document to the server. The object record of the document may not be modified while the document is edited. This function will only works for pure text documents. It will not open a special data connection and therefore blocks the control connection during the transfer.

 See also hw_PipeDocument(), hw_FreeDocument(), hw_DocumentBodyTag(), hw_DocumentSize(), hw_OutputDocument(), hw_GetText().

hw_Error (PHP3 >= 3.0.3, PHP4)

error number

int hw_error (int connection)

 Returns the last error number. If the return value is 0 no error has occurred. The error relates to the last command.

hw_Free_Document (PHP3 >= 3.0.3, PHP4)

frees hw_document

int hw_free_document (int hw_document)

 Frees the memory occupied by the Hyperwave document.

hw_GetParents (PHP3 >= 3.0.3, PHP4)

object ids of parents

array hw_getparentsobj (int connection, int objectID)

 Returns an indexed array of object ids. Each object id belongs to a parent of the object with ID objectID.

hw_GetParentsObj (PHP3 >= 3.0.3, PHP4)

object records of parents

array hw_getparentsobj (int connection, int objectID)

 Returns an indexed array of object records plus an associated array with statistical information about the object records. The associated array is the last entry of the returned array. Each object record belongs to a parent of the object with ID objectID.

hw_GetChildColl (PHP3 >= 3.0.3, PHP4)

object ids of child collections

array hw_getchildcoll (int connection, int objectID)

 Returns an array of object ids. Each object ID belongs to a child collection of the collection with ID objectID. The function will not return child documents.

 See also hw_GetChildren(), hw_GetChildDocColl().

hw_GetChildCollObj (PHP3 >= 3.0.3, PHP4)

object records of child collections

array hw_getchildcollobj (int connection, int objectID)

 Returns an array of object records. Each object records belongs to a child collection of the collection with ID objectID. The function will not return child documents.

 See also hw_ChildrenObj(), hw_GetChildDocCollObj().

hw_GetRemote (PHP3 >= 3.0.3, PHP4)

Gets a remote document

int hw_getremote (int connection, int objectID)

 Returns a remote document. Remote documents in Hyperwave notation are documents retrieved from an external source. Common remote documents are for example external web pages or queries in a database. In order to be able to access external sources throught remote documents Hyperwave introduces the HGI (Hyperwave Gateway Interface) which is similar to the CGI. Currently, only ftp, http-servers and some databases can be accessed by the HGI. Calling hw_GetRemote() returns the document from the external source. If you want to use this function you should be very familiar with HGIs. You should also consider to use PHP instead of Hyperwave to access external sources. Adding database support by a Hyperwave gateway should be more difficult than doing it in PHP.

 See also hw_GetRemoteChildren().

hw_GetRemoteChildren (PHP3 >= 3.0.3, PHP4)

Gets children of remote document

int hw_getremotechildren (int connection, string object record)

 Returns the children of a remote document. Children of a remote document are remote documents itself. This makes sense if a database query has to be narrowed and is explained in Hyperwave Programmers' Guide. If the number of children is 1 the function will return the document itself formated by the Hyperwave Gateway Interface (HGI). If the number of children is greater than 1 it will return an array of object record with each maybe the input value for another call to hw_GetRemoteChildren(). Those object records are virtual and do not exist in the Hyperwave server, therefore they do not have a valid object ID. How exactely such an object record looks like is up to the HGI. If you want to use this function you should be very familiar with HGIs. You should also consider to use PHP instead of Hyperwave to access external sources. Adding database support by a Hyperwave gateway should be more difficult than doing it in PHP.

 See also hw_GetRemote().

hw_GetSrcByDestObj (PHP3 >= 3.0.3, PHP4)

Returns anchors pointing at object

array hw_getsrcbydestobj (int connection, int objectID)

 Returns the object records of all anchors pointing to the object with ID objectID. The object can either be a document or an anchor of type destination.

 See also hw_GetAnchors().

hw_GetObject (PHP3 >= 3.0.3, PHP4)

object record

array hw_getobject (int connection, [int|array] objectID, string query)

 Returns the object record for the object with ID objectID if the second parameter is an integer. If the second parameter is an array of integer the function will return an array of object records. In such a case the last parameter is also evaluated which is a query string.

 The query string has the following syntax:

 <expr> ::= "(" <expr> ")" |

 "!" <expr> | /* NOT */

 <expr> "||" <expr> | /* OR */

 <expr> "&&" <expr> | /* AND */

 <attribute> <operator> <value>

 <attribute> ::= /* any attribute name (Title, Author, DocumentType ...) */

 <operator> ::= "=" | /* equal */

 "<" | /* less than (string compare) */

 ">" | /* greater than (string compare) */

 "~" /* regular expression matching */

 The query allows to further select certain objects from the list of given objects. Unlike the other query functions, this query may use not indexed attributes. How many object records are returned depends on the query and if access to the object is allowed.

 See also hw_GetAndLock(), hw_GetObjectByQuery().

hw_GetAndLock (PHP3 >= 3.0.3, PHP4)

return bject record and lock object

string hw_getandlock (int connection, int objectID)

 Returns the object record for the object with ID objectID. It will also lock the object, so other users cannot access it until it is unlocked.

 See also hw_Unlock(), hw_GetObject().

hw_GetText (PHP3 >= 3.0.3, PHP4)

retrieve text document

int hw_gettext (int connection, int objectID [, mixed rootID/prefix])

 Returns the document with object ID objectID. If the document has anchors which can be inserted, they will be inserted already. The optional parameter rootID/prefix can be a string or an integer. If it is an integer it determines how links are inserted into the document. The default is 0 and will result in links that are constructed from the name of the link's destination object. This is useful for web applications. If a link points to an object with name 'internet_movie' the HTML link will be . The actual location of the source and destination object in the document hierachy is disregarded. You will have to set up your web browser, to rewrite that URL to for example '/my_script.php3/internet_movie'. 'my_script.php3' will have to evaluate $PATH_INFO and retrieve the document. All links will have the prefix '/my_script.php3/'. If you do not want this you can set the optional parameter rootID/prefix to any prefix which is used instead. Is this case it has to be a string.

 If rootID/prefix is an integer and unequal to 0 the link is constructed from all the names starting at the object with the id rootID/prefix separated by a slash relative to the current object. If for example the above document 'internet_movie' is located at 'a-b-c-internet_movie' with '-' being the seperator between hierachy levels on the Hyperwave server and the source document is located at 'a-b-d-source' the resulting HTML link would be: . This is useful if you want to download the whole server content onto disk and map the document hierachy onto the file system.

 This function will only work for pure text documents. It will not open a special data connection and therefore blocks the control connection during the transfer.

 See also hw_PipeDocument(), hw_FreeDocument(), hw_DocumentBodyTag(), hw_DocumentSize(), hw_OutputDocument().

hw_GetObjectByQuery (PHP3 >= 3.0.3, PHP4)

search object

array hw_getobjectbyquery (int connection, string query, int max_hits)

 Searches for objects on the whole server and returns an array of object ids. The maximum number of matches is limited to max_hits. If max_hits is set to -1 the maximum number of matches is unlimited.

 The query will only work with indexed attributes.

 See also hw_GetObjectByQueryObj().

hw_GetObjectByQueryObj (PHP3 >= 3.0.3, PHP4)

search object

array hw_getobjectbyqueryobj (int connection, string query, int max_hits)

 Searches for objects on the whole server and returns an array of object records. The maximum number of matches is limited to max_hits. If max_hits is set to -1 the maximum number of matches is unlimited.

 The query will only work with indexed attributes.

 See also hw_GetObjectByQuery().

hw_GetObjectByQueryColl (PHP3 >= 3.0.3, PHP4)

search object in collection

array hw_getobjectbyquerycoll (int connection, int objectID, string query, int max_hits)

 Searches for objects in collection with ID objectID and returns an array of object ids. The maximum number of matches is limited to max_hits. If max_hits is set to -1 the maximum number of matches is unlimited.

 The query will only work with indexed attributes.

 See also hw_GetObjectByQueryCollObj().

hw_GetObjectByQueryCollObj (PHP3 >= 3.0.3, PHP4)

search object in collection

array hw_getobjectbyquerycollobj (int connection, int objectID, string query, int max_hits)

 Searches for objects in collection with ID objectID and returns an array of object records. The maximum number of matches is limited to max_hits. If max_hits is set to -1 the maximum number of matches is unlimited.

 The query will only work with indexed attributes.

 See also hw_GetObjectByQueryColl().

hw_GetChildDocColl (PHP3 >= 3.0.3, PHP4)

object ids of child documents of collection

array hw_getchilddoccoll (int connection, int objectID)

 Returns array of object ids for child documents of a collection.

 See also hw_GetChildren(), hw_GetChildColl().

hw_GetChildDocCollObj (PHP3 >= 3.0.3, PHP4)

object records of child documents of collection

array hw_getchilddoccollobj (int connection, int objectID)

 Returns an array of object records for child documents of a collection.

 See also hw_ChildrenObj(), hw_GetChildCollObj().

hw_GetAnchors (PHP3 >= 3.0.3, PHP4)

object ids of anchors of document

array hw_getanchors (int connection, int objectID)

 Returns an array of object ids with anchors of the document with object ID objectID.

hw_GetAnchorsObj (PHP3 >= 3.0.3, PHP4)

object records of anchors of document

array hw_getanchorsobj (int connection, int objectID)

 Returns an array of object records with anchors of the document with object ID objectID.

hw_Mv (PHP3 >= 3.0.3, PHP4)

moves objects

int hw_mv (int connection, array object id array, int source id, int destination id)

 Moves the objects with object ids as specified in the second parameter from the collection with id source id to the collection with the id destination id. If the destination id is 0 the objects will be unlinked from the source collection. If this is the last instance of that object it will be deleted. If you want to delete all instances at once, use hw_deleteobject().

 The value return is the number of moved objects.

 See also hw_cp(), hw_deleteobject().

hw_Identify (PHP3 >= 3.0.3, PHP4)

identifies as user

int hw_identify (string username, string password)

 Identifies as user with username and password. Identification is only valid for the current session. I do not thing this function will be needed very often. In most cases it will be easier to identify with the opening of the connection.

 See also hw_Connect().

hw_InCollections (PHP3 >= 3.0.3, PHP4)

check if object ids in collections

array hw_incollections (int connection, array object_id_array, array collection_id_array, int return_collections)

 Checks whether a set of objects (documents or collections) specified by the object_id_array is part of the collections listed in collection_id_array. When the fourth parameter return_collections is 0, the subset of object ids that is part of the collections (i.e., the documents or collections that are children of one or more collections of collection ids or their subcollections, recursively) is returned as an array. When the fourth parameter is 1, however, the set of collections that have one or more objects of this subset as children are returned as an array. This option allows a client to, e.g., highlight the part of the collection hierarchy that contains the matches of a previous query, in a graphical overview.

hw_Info (PHP3 >= 3.0.3, PHP4)

info about connection

string hw_info (int connection)

 Returns information about the current connection. The returned string has the following format: <Serverstring>, <Host>, <Port>, <Username>, <Port of Client>, <Byte swapping>

hw_InsColl (PHP3 >= 3.0.3, PHP4)

insert collection

int hw_inscoll (int connection, int objectID, array object_array)

 Inserts a new collection with attributes as in object_array into collection with object ID objectID.

hw_InsDoc (PHP3 >= 3.0.3, PHP4)

insert document

int hw_insdoc (int connection, int parentID, string object_record, string text)

 Inserts a new document with attributes as in object_record into collection with object ID parentID. This function inserts either an object record only or an object record and a pure ascii text in text if text is given. If you want to insert a general document of any kind use hw_insertdocument() instead.

 See also hw_InsertDocument(), hw_InsColl().

hw_InsertDocument (PHP3 >= 3.0.3, PHP4)

upload any document

int hw_insertdocument (int connection, int parent_id, int hw_document)

 Uploads a document into the collection with parent_id. The document has to be created before with hw_NewDocument(). Make sure that the object record of the new document contains at least the attributes: Type, DocumentType, Title and Name. Possibly you also want to set the MimeType. The functions returns the object id of the new document or false.

 See also hw_PipeDocument().

hw_InsertObject (PHP3 >= 3.0.3, PHP4)

inserts an object record

int hw_insertobject (int connection, string object rec, string parameter)

 Inserts an object into the server. The object can be any valid hyperwave object. See the HG-CSP documentation for a detailed information on how the parameters have to be.

 Note: If you want to insert an Anchor, the attribute Position has always been set either to a start/end value or to 'invisible'. Invisible positions are needed if the annotation has no correspondig link in the annotation text.

 See also hw_PipeDocument(), hw_InsertDocument(), hw_InsDoc(), hw_InsColl().

hw_mapid (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Maps global id on virtual local id

int hw_mapid (int connection, int server id, int object id)

 Maps a global object id on any hyperwave server, even those you did not connect to with hw_connect(), onto a virtual object id. This virtual object id can then be used as any other object id, e.g. to obtain the object record with hw_getobject(). The server id is the first part of the global object id (GOid) of the object which is actually the IP number as an integer.

 Note: In order to use this function you will have to set the F_DISTRIBUTED flag, which can currently only be set at compile time in hg_comm.c. It is not set by default. Read the comment at the beginning of hg_comm.c

hw_Modifyobject (PHP3 >= 3.0.7, PHP4 >= 4.0b2)

modifies object record

int hw_modifyobject (int connection, int object_to_change, array remove, array add, int mode)

 This command allows to remove, add, or modify individual attributes of an object record. The object is specified by the Object ID object_to_change. The first array remove is a list of attributes to remove. The second array add is a list of attributes to add. In order to modify an attribute one will have to remove the old one and add a new one. hw_modifyobject() will always remove the attributes before it adds attributes unless the value of the attribute to remove is not a string or array.

 The last parameter determines if the modification is performed recursively. 1 means recurive modification. If some of the objects cannot be modified they will be skiped without notice. hw_error() may not indicate an error though some of the objects could not be modified.

 The keys of both arrays are the attributes name. The value of each array element can either be an array, a string or anything else. If it is an array each attribute value is constructed by the key of each element plus a colon and the value of each element. If it is a string it is taken as the attribute value. An empty string will result in a complete removal of that attribute. If the value is neither a string nor an array but something else, e.g. an integer, no operation at all will be performed on the attribute. This is neccessary if you want to to add a completely new attribute not just a new value for an existing attribute. If the remove array contained an empty string for that attribute, the attribute would be tried to be removed which would fail since it doesn't exist. The following addition of a new value for that attribute would also fail. Setting the value for that attribute to e.g. 0 would not even try to remove it and the addition will work.

 If you would like to change the attribute 'Name' with the current value 'books' into 'articles' you will have to create two arrays and call hw_modifyobject().

Example 1. modifying an attribute

 // $connect is an existing connection to the Hyperwave server

 // $objid is the ID of the object to modify

 $remarr = array("Name" => "books");

 $addarr = array("Name" => "articles");

 $hw_modifyobject($connect, $objid, $remarr, $addarr);

 In order to delete/add a name=value pair from/to the object record just pass the remove/add array and set the last/third parameter to an empty array. If the attribute is the first one with that name to add, set attribute value in the remove array to an integer.

Example 2. adding a completely new attribute

 // $connect is an existing connection to the Hyperwave server

 // $objid is the ID of the object to modify

 $remarr = array("Name" => 0);

 $addarr = array("Name" => "articles");

 $hw_modifyobject($connect, $objid, $remarr, $addarr);

Note: Multilingual attributes, e.g. 'Title', can be modified in two ways. Either by providing the attributes value in its native form 'language':'title' or by providing an array with elements for each language as described above. The above example would than be:

Example 3. modifying Title attribute

 $remarr = array("Title" => "en:Books");

 $addarr = array("Title" => "en:Articles");

 $hw_modifyobject($connect, $objid, $remarr, $addarr);

 or

Example 4. modifying Title attribute

 $remarr = array("Title" => array("en" => "Books"));

 $addarr = array("Title" => array("en" => "Articles", "ge"=>"Artikel"));

 $hw_modifyobject($connect, $objid, $remarr, $addarr);

 This removes the english title 'Books' and adds the english title 'Articles' and the german title 'Artikel'.

Example 5. removing attribute

 $remarr = array("Title" => "");

 $addarr = array("Title" => "en:Articles");

 $hw_modifyobject($connect, $objid, $remarr, $addarr);

Note: This will remove all attributes with the name 'Title' and adds a new 'Title' attribute. This comes in handy if you want to remove attributes recursively.

Note: If you need to delete all attributes with a certain name you will have to pass an empty string as the attribute value.

Note: Only the attributes 'Title', 'Description' and 'Keyword' will properly handle the language prefix. If those attributes don't carry a language prefix, the prefix 'xx' will be assigned.

Note: The 'Name' attribute is somewhat special. In some cases it cannot be complete removed. You will get an error message 'Change of base attribute' (not clear when this happens). Therefore you will always have to add a new Name first and than remove the old one.

Note: You may not suround this function by calls to hw_getandlock() and hw_unlock(). hw_modifyobject() does this internally.

 Returns TRUE if no error occurs otherwise FALSE.

hw_New_Document (PHP3 >= 3.0.3, PHP4)

create new document

int hw_new_document (string object_record, string document_data, int document_size)

 Returns a new Hyperwave document with document data set to document_data and object record set to object_record. The length of the document_data has to passed in document_sizeThis function does not insert the document into the Hyperwave server.

 See also hw_FreeDocument(), hw_DocumentSize(), hw_DocumentBodyTag(), hw_OutputDocument(), hw_InsertDocument().

hw_Objrec2Array (PHP3 >= 3.0.3, PHP4)

convert attributes from object record to object array

array hw_objrec2array (string object_record)

 Converts an object_record into an object array. The keys of the resulting array are the attributes names. Multiple attributes like 'Title' in different languages form its own array. The keys of this array are the left part to the colon of the attribute value. Currently only the attributes 'Title', 'Description' and 'Keyword' are treated properly. Other multiple attributes form an index array. Currently only the attribute 'Group' is handled properly.

 See also hw_array2objrec().

hw_OutputDocument (PHP3 >= 3.0.3, PHP4 <= 4.0b1)

prints hw_document

int hw_outputdocument (int hw_document)

 Prints the document without the BODY tag.

hw_pConnect (PHP3 >= 3.0.3, PHP4)

make a persistent database connection

int hw_pconnect (string host, int port, string username, string password)

 Returns a connection index on success, or false if the connection could not be made. Opens a persistent connection to a Hyperwave server. Each of the arguments should be a quoted string, except for the port number. The username and password arguments are optional and can be left out. In such a case no identification with the server will be done. It is similar to identify as user anonymous. This function returns a connection index that is needed by other Hyperwave functions. You can have multiple persistent connections open at once.

 See also hw_Connect().

hw_PipeDocument (PHP3 >= 3.0.3, PHP4)

retrieve any document

int hw_pipedocument (int connection, int objectID)

 Returns the Hyperwave document with object ID objectID. If the document has anchors which can be inserted, they will have been inserted already. The document will be transfered via a special data connection which does not block the control connection.

 See also hw_GetText() for more on link insertion, hw_FreeDocument(), hw_DocumentSize(), hw_DocumentBodyTag(), hw_OutputDocument().

hw_Root (PHP3 >= 3.0.3, PHP4)

root object id

int hw_root ()

 Returns the object ID of the hyperroot collection. Currently this is always 0. The child collection of the hyperroot is the root collection of the connected server.

hw_Unlock (PHP3 >= 3.0.3, PHP4)

unlock object

int hw_unlock (int connection, int objectID)

 Unlocks a document, so other users regain access.

 See also hw_GetAndLock().

hw_Who (PHP3 >= 3.0.3, PHP4)

List of currently logged in users

int hw_who (int connection)

 Returns an array of users currently logged into the Hyperwave server. Each entry in this array is an array itself containing the elements id, name, system, onSinceDate, onSinceTime, TotalTime and self. 'self' is 1 if this entry belongs to the user who initianted the request.

hw_Username (unknown)

name of currently logged in user

string hw_getusername (int connection)

 Returns the username of the connection.

XXVI. ICAP Functions

 To get these functions to work, you have to compile PHP with --with-icap. That requires the icap library to be installed. Grab the latest version from http://icap.chek.com/ and compile and install it.

icap_open (PHP4 >= 4.0b4)

Opens up an ICAP connection

stream icap_open (string calendar, string username, string password, string options)

 Returns an ICAP stream on success, false on error.

 icap_open() opens up an ICAP connection to the specified calendar store. If the optional options is specified, passes the options to that mailbox also.

icap_close (unknown)

Close an ICAP stream

int icap_close (int icap_stream [, int flags])

 Closes the given icap stream.

icap_fetch_event (PHP4 >= 4.0b4)

Fetches an event from the calendar stream/

int icap_fetch_event (int stream_id, int event_id [, int options])

 Icap_fetch_event() fetches an event from the calendar stream specified by event_id.

 Returns an event object consisting of:

•
 int id - ID of that event.

•
 int public - TRUE if the event if public, FALSE if it is private.

•
 string category - Category string of the event.

•
 string title - Title string of the event.

•
 string description - Description string of the event.

•
 int alarm - number of minutes before the event to send an alarm/reminder.

•
 object start - Object containing a datetime entry.

•
 object end - Object containing a datetime entry.

 All datetime entries consist of an object that contains:

•
 int year - year

•
 int month - month

•
 int mday - day of month

•
 int hour - hour

•
 int min - minutes

•
 int sec - seconds

icap_list_events (PHP4 >= 4.0RC1)

 Return a list of events between two given datetimes

array icap_list_events (int stream_id, int begin_date [, int end_date])

 Returns an array of event ID's that are between the two given datetimes.

 Icap_list_events() function takes in a beginning datetime and an end datetime for a calendar stream. An array of event id's that are between the given datetimes are returned.

 All datetime entries consist of an object that contains:

•
 int year - year

•
 int month - month

•
 int mday - day of month

•
 int hour - hour

•
 int min - minutes

•
 int sec - seconds

icap_store_event (PHP4 >= 4.0b4)

Store an event into an ICAP calendar

string icap_store_event (int stream_id, object event)

 Icap_store_event() Stores an event into an ICAP calendar. An event object consists of:

•
 int public - 1 if public, 0 if private;

•
 string caegory - Category string of the event.

•
 string title - Title string of the event.

•
 string description - Description string of the event.

•
 int alarm - Number of minutes before the event to sned out an alarm.

•
 datetime start - datetime object of the start of the event.

•
 datetime end - datetime object of the end of the event.

 All datetime entries consist of an object that contains:

•
 int year - year

•
 int month - month

•
 int mday - day of month

•
 int hour - hour

•
 int min - minutes

•
 int sec - seconds

 Returns true on success and false on error.

icap_delete_event (PHP4 >= 4.0b4)

Delete an event from an ICAP calendar

string icap_delete_event (int sream_id, int uid)

 Icap_delete_event() deletes the calendar event specified by the uid.

 Returns true.

icap_snooze (PHP4 >= 4.0b4)

Snooze an alarm

string icap_snooze (int stream_id, int uid)

 Icap_snooze() turns on an alarm for a calendar event specified by the uid.

 Returns true.

icap_list_alarms (PHP4 >= 4.0b4)

 Return a list of events that has an alarm triggered at the given datetime

int icap_list_alarms (int stream_id, array date, array time)

 Returns an array of event ID's that has an alarm going off at the given datetime.

 Icap_list_alarms() function takes in a datetime for a calendar stream. An array of event id's that has an alarm should be going off at the datetime are returned.

 All datetime entries consist of an object that contains:

•
 int year - year

•
 int month - month

•
 int mday - day of month

•
 int hour - hour

•
 int min - minutes

•
 int sec - seconds

XXVII. Image functions

 You can use the image functions in PHP to get the size of JPEG, GIF, PNG, and SWF images, and if you have the GD library (available at http://www.boutell.com/gd/) you will also be able to create and manipulate images.

 The format of images you are able to manipulate depend on the version of gd you install, and any other libraries gd might need to access those image formats. Versions of gd older than gd-1.6 support gif format images, and do not support png, where versions greater than gd-1.6 support png, not gif.

 In order to read and write images in jpeg format, you will need to obtain and install jpeg-6b (available at ftp://ftp.uu.net/graphics/jpeg/), and then recompile gd to make use of jpeg-6b. You will also have to compile PHP with --with-jpeg-dir=/path/to/jpeg-6b.

 To add support for Type 1 fonts, you can install t1lib (available at ftp://ftp.neuroinformatik.ruhr-uni-bochum.de/pub/software/t1lib/), and then add --with-t1lib[=dir].

GetImageSize (PHP3 , PHP4)

Get the size of a GIF, JPEG, PNG or SWF image

array getimagesize (string filename [, array imageinfo])

 The GetImageSize() function will determine the size of any GIF, JPG, PNG or SWF image file and return the dimensions along with the file type and a height/width text string to be used inside a normal HTML IMG tag.

 Returns an array with 4 elements. Index 0 contains the width of the image in pixels. Index 1 contains the height. Index 2 a flag indicating the type of the image. 1 = GIF, 2 = JPG, 3 = PNG, 4 = SWF. Index 3 is a text string with the correct "height=xxx width=xxx" string that can be used directly in an IMG tag.

Example 1. GetImageSize

<?php $size = GetImageSize ("img/flag.jpg"); ?>

<IMG SRC="img/flag.jpg" <?php echo $size[3]; ?>

 The optional imageinfo parameter allows you to extract some extended information from the image file. Currently this will return the diffrent JPG APP markers in an associative Array. Some Programs use these APP markers to embedd text information in images. A very common one in to embed IPTC http://www.xe.net/iptc/ information in the APP13 marker. You can use the iptcparse() function to parse the binary APP13 marker into something readable.

Example 2. GetImageSize returning IPTC

<?php

 $size = GetImageSize ("testimg.jpg",&$info);

 if (isset ($info["APP13"])) {

 $iptc = iptcparse ($info["APP13"]);

 var_dump ($iptc);

 }

?>

Note: This function does not require the GD image library.

ImageArc (PHP3 , PHP4)

Draw a partial ellipse

int imagearc (int im, int cx, int cy, int w, int h, int s, int e, int col)

 ImageArc() draws a partial ellipse centered at cx, cy (top left is 0, 0) in the image represented by im. W and h specifies the ellipse's width and height respectively while the start and end points are specified in degrees indicated by the s and e. arguments.

ImageChar (PHP3 , PHP4)

Draw a character horizontally

int imagechar (int im, int font, int x, int y, string c, int col)

 ImageChar() draws the first character of c in the image identified by id with its upper-left at x,y (top left is 0, 0) with the color col. If font is 1, 2, 3, 4 or 5, a built-in font is used (with higher numbers corresponding to larger fonts).

 See also imageloadfont().

ImageCharUp (PHP3 , PHP4)

Draw a character vertically

int imagecharup (int im, int font, int x, int y, string c, int col)

 ImageCharUp() draws the character c vertically in the image identified by im at coordinates x, y (top left is 0, 0) with the color col. If font is 1, 2, 3, 4 or 5, a built-in font is used.

 See also imageloadfont().

ImageColorAllocate (PHP3 , PHP4)

Allocate a color for an image

int imagecolorallocate (int im, int red, int green, int blue)

 ImageColorAllocate() returns a color identifier representing the color composed of the given RGB components. The im argument is the return from the imagecreate() function. ImageColorAllocate() must be called to create each color that is to be used in the image represented by im.

$white = ImageColorAllocate ($im, 255, 255, 255);

$black = ImageColorAllocate ($im, 0, 0, 0);

ImageColorDeAllocate (PHP3 >= 3.0.6, PHP4)

 De-allocate a color for an image

int imagecolordeallocate (int im, int index)

 The ImageColorDeAllocate() function de-allocates a color previously allocated with the ImageColorAllocate() function.

$white = ImageColorAllocate($im, 255, 255, 255);

ImageColorDeAllocate($im, $white);

ImageColorAt (PHP3 , PHP4)

Get the index of the color of a pixel

int imagecolorat (int im, int x, int y)

 Returns the index of the color of the pixel at the specified location in the image.

 See also imagecolorset() and imagecolorsforindex().

ImageColorClosest (PHP3 , PHP4)

 Get the index of the closest color to the specified color

int imagecolorclosest (int im, int red, int green, int blue)

 Returns the index of the color in the palette of the image which is "closest" to the specified RGB value.

 The "distance" between the desired color and each color in the palette is calculated as if the RGB values represented points in three-dimensional space.

 See also imagecolorexact().

ImageColorExact (PHP3 , PHP4)

Get the index of the specified color

int imagecolorexact (int im, int red, int green, int blue)

 Returns the index of the specified color in the palette of the image.

 If the color does not exist in the image's palette, -1 is returned.

 See also imagecolorclosest().

ImageColorResolve (PHP3 >= 3.0.2, PHP4)

 Get the index of the specified color or its closest possible alternative

int imagecolorresolve (int im, int red, int green, int blue)

 This function is guaranteed to return a color index for a requested color, either the exact color or the closest possible alternative.

 See also imagecolorclosest().

ImageGammaCorrect (PHP3 >= 3.0.13, PHP4 >= 4.0.0)

 Apply a gamma correction to a GD image

int imagegammacorrect (int im, double inputgamma, double outputgamma)

 The ImageGammaCorrect() function applies gamma correction to a gd image stream (im) given an input gamma, the parameter inputgamma and an output gamma, the parameter outputgamma.

ImageColorSet (PHP3 , PHP4)

 Set the color for the specified palette index

bool imagecolorset (int im, int index, int red, int green, int blue)

 This sets the specified index in the palette to the specified color. This is useful for creating flood-fill-like effects in paletted images without the overhead of performing the actual flood-fill.

 See also imagecolorat().

ImageColorsForIndex (PHP3 , PHP4)

Get the colors for an index

array imagecolorsforindex (int im, int index)

 This returns an associative array with red, green, and blue keys that contain the appropriate values for the specified color index.

 See also imagecolorat() and imagecolorexact().

ImageColorsTotal (PHP3 , PHP4)

 Find out the number of colors in an image's palette

int imagecolorstotal (int im)

 This returns the number of colors in the specified image's palette.

 See also imagecolorat() and imagecolorsforindex().

ImageColorTransparent (PHP3 , PHP4)

Define a color as transparent

int imagecolortransparent (int im [, int col])

 ImageColorTransparent() sets the transparent color in the im image to col. Im is the image identifier returned by ImageCreate() and col is a color identifier returned by ImageColorAllocate().

 The identifier of the new (or current, if none is specified) transparent color is returned.

ImageCopy (PHP3 >= 3.0.6, PHP4)

 Copy part of an image

int ImageCopy (int dst_im, int src_im, int dst_x, int dst_y, int src_x, int src_y, int src_w, int src_h)

 Copy a part of src_im onto dst_im starting at the x,y coordinates src_x, src_y with a width of src_w and a height of src_h. The portion defined will be copied onto the x,y coordinates, dst_x and dst_y.

ImageCopyResized (PHP3 , PHP4)

Copy and resize part of an image

int imagecopyresized (int dst_im, int src_im, int dstX, int dstY, int srcX, int srcY, int dstW, int dstH, int srcW, int srcH)

 ImageCopyResized() copies a rectangular portion of one image to another image. Dst_im is the destination image, src_im is the source image identifier. If the source and destination coordinates and width and heights differ, appropriate stretching or shrinking of the image fragment will be performed. The coordinates refer to the upper left corner. This function can be used to copy regions within the same image (if dst_im is the same as src_im) but if the regions overlap the results will be unpredictable.

ImageCreate (PHP3 , PHP4)

Create a new image

int imagecreate (int x_size, int y_size)

 ImageCreate() returns an image identifier representing a blank image of size x_size by y_size.

Example 1. Creating a new GD image stream and outputting an image.

<?php

header ("Content-type: image/png");

$im = @ImageCreate (50, 100)

 or die ("Cannot Initialize new GD image stream");

$background_color = ImageColorAllocate ($im, 255, 255, 255);

$text_color = ImageColorAllocate ($im, 233, 14, 91);

ImageString ($im, 1, 5, 5, "A Simple Text String", $text_color);

ImagePng ($im);

?>

ImageCreateFromGIF (PHP3 , PHP4)

Create a new image from file or URL

int imagecreatefromgif (string filename)

 ImageCreateFromGif() returns an image identifier representing the image obtained from the given filename.

 ImageCreateFromGif() returns an empty string on failure. It also outputs an error message, which unfortunately displays as a broken link in a browser. To ease debugging the following example will produce an error GIF:

Example 1. Example to handle an error during creation (courtesy vic@zymsys.com)

function LoadGif ($imgname) {

 $im = @ImageCreateFromGIF ($imgname); /* Attempt to open */

 if (!$im) { /* See if it failed */

 $im = ImageCreate (150, 30); /* Create a blank image */

 $bgc = ImageColorAllocate ($im, 255, 255, 255);

 $tc = ImageColorAllocate ($im, 0, 0, 0);

 ImageFilledRectangle ($im, 0, 0, 150, 30, $bgc);

 /* Output an errmsg */

 ImageString($im, 1, 5, 5, "Error loading $imgname", $tc);

 }

 return $im;

}

Note: Since all GIF support was removed from the GD library in version 1.6, this function is not available if you are using that version of the GD library.

ImageCreateFromJPEG (PHP3 >= 3.0.16, PHP4 >= 4.0RC1)

Create a new image from file or URL

int imagecreatefromjpeg (string filename)

 ImageCreateFromJPEG() returns an image identifier representing the image obtained from the given filename.

 ImagecreateFromJPEG() returns an empty string on failure. It also outputs an error message, which unfortunately displays as a broken link in a browser. To ease debugging the following example will produce an error JPEG:

Example 1. Example to handle an error during creation (courtesy vic@zymsys.com)

function LoadJpeg ($imgname) {

 $im = @ImageCreateFromJPEG ($imgname); /* Attempt to open */

 if (!$im) { /* See if it failed */

 $im = ImageCreate (150, 30); /* Create a blank image */

 $bgc = ImageColorAllocate ($im, 255, 255, 255);

 $tc = ImageColorAllocate ($im, 0, 0, 0);

 ImageFilledRectangle ($im, 0, 0, 150, 30, $bgc);

 /* Output an errmsg */

 ImageString ($im, 1, 5, 5, "Error loading $imgname", $tc);

 }

 return $im;

}

ImageCreateFromPNG (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Create a new image from file or URL

int imagecreatefrompng (string filename)

 ImageCreateFromPNG() returns an image identifier representing the image obtained from the given filename.

 ImageCreateFromPNG() returns an empty string on failure. It also outputs an error message, which unfortunately displays as a broken link in a browser. To ease debugging the following example will produce an error PNG:

Example 1. Example to handle an error during creation (courtesy vic@zymsys.com)

function LoadPNG ($imgname) {

 $im = @ImageCreateFromPNG ($imgname); /* Attempt to open */

 if (!$im) { /* See if it failed */

 $im = ImageCreate (150, 30); /* Create a blank image */

 $bgc = ImageColorAllocate ($im, 255, 255, 255);

 $tc = ImageColorAllocate ($im, 0, 0, 0);

 ImageFilledRectangle ($im, 0, 0, 150, 30, $bgc);

 /* Output an errmsg */

 ImageString ($im, 1, 5, 5, "Error loading $imgname", $tc);

 }

 return $im;

}

ImageDashedLine (PHP3 , PHP4)

Draw a dashed line

int imagedashedline (int im, int x1, int y1, int x2, int y2, int col)

 ImageDashedLine() draws a dashed line from x1, y1 to x2, y2 (top left is 0, 0) in image im of color col.

 See also ImageLine().

ImageDestroy (PHP3 , PHP4)

Destroy an image

int imagedestroy (int im)

 ImageDestroy() frees any memory associated with image im. Im is the image identifier returned by the ImageCreate() function.

ImageFill (PHP3 , PHP4)

Flood fill

int imagefill (int im, int x, int y, int col)

 ImageFill() performs a flood fill starting at coordinate x, y (top left is 0, 0) with color col in the image im.

ImageFilledPolygon (PHP3 , PHP4)

Draw a filled polygon

int imagefilledpolygon (int im, array points, int num_points, int col)

 ImageFilledPolygon() creates a filled polygon in image im. Points is a PHP array containing the polygon's vertices, ie. points[0] = x0, points[1] = y0, points[2] = x1, points[3] = y1, etc. Num_points is the total number of vertices.

ImageFilledRectangle (PHP3 , PHP4)

Draw a filled rectangle

int imagefilledrectangle (int im, int x1, int y1, int x2, int y2, int col)

 ImageFilledRectangle() creates a filled rectangle of color col() in image im starting at upper left coordinates x1, y1 and ending at bottom right coordinates x2, y2. 0, 0 is the top left corner of the image.

ImageFillToBorder (PHP3 , PHP4)

Flood fill to specific color

int imagefilltoborder (int im, int x, int y, int border, int col)

 ImageFillToBorder() performs a flood fill whose border color is defined by border. The starting point for the fill is x, y (top left is 0, 0) and the region is filled with color col.

ImageFontHeight (PHP3 , PHP4)

Get font height

int imagefontheight (int font)

 Returns the pixel height of a character in the specified font.

 See also ImageFontWidth() and ImageLoadFont().

ImageFontWidth (PHP3 , PHP4)

Get font width

int imagefontwidth (int font)

 Returns the pixel width of a character in font.

 See also ImageFontHeight() and ImageLoadFont().

ImageGIF (PHP3 , PHP4)

Output image to browser or file

int imagegif (int im [, string filename])

 ImageGIF() creates the GIF file in filename from the image im. The im argument is the return from the imagecreate() function.

 The image format will be GIF87a unless the image has been made transparent with ImageColorTransparent(), in which case the image format will be GIF89a.

 The filename argument is optional, and if left off, the raw image stream will be output directly. By sending an image/gif content-type using header(), you can create a PHP script that outputs GIF images directly.

Note: Since all GIF support was removed from the GD library in version 1.6, this function is not available if you are using that version of the GD library.

ImagePNG (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Output a PNG image to either the browser or a file

int imagepng (int im [, string filename])

 The ImagePng() outputs a GD image stream (im) in PNG format to standard output (usually the browser) or, if a filename is given by the filename it outputs the image to the file.

<?php

$im = ImageCreateFromPng("test.png");

ImagePng($im);

?>

ImageJPEG (PHP3 >= 3.0.16, PHP4 >= 4.0RC1)

Output image to browser or file

int imagejpeg (int im [, string filename [, int quality]])

 ImageJPEG() creates the JPEG file in filename from the image im. The im argument is the return from the ImageCreate() function.

 The filename argument is optional, and if left off, the raw image stream will be output directly. To skip the filename argument in order to provide a quality argument just use an empty string (''). By sending an image/jpeg content-type using header(), you can create a PHP script that outputs JPEG images directly.

Note: JPEG support is only available in PHP if PHP was compiled against GD-1.8 or later.

ImageInterlace (PHP3 , PHP4)

Enable or disable interlace

int imageinterlace (int im [, int interlace])

 ImageInterlace() turns the interlace bit on or off. If interlace is 1 the im image will be interlaced, and if interlace is 0 the interlace bit is turned off.

 This functions returns whether the interlace bit is set for the image.

ImageLine (PHP3 , PHP4)

Draw a line

int imageline (int im, int x1, int y1, int x2, int y2, int col)

 ImageLine() draws a line from x1, y1 to x2, y2 (top left is 0, 0) in image im of color col.

 See also ImageCreate() and ImageColorAllocate().

ImageLoadFont (PHP3 , PHP4)

Load a new font

int imageloadfont (string file)

 ImageLoadFont() loads a user-defined bitmap font and returns an identifier for the font (that is always greater than 5, so it will not conflict with the built-in fonts).

 The font file format is currently binary and architecture dependent. This means you should generate the font files on the same type of CPU as the machine you are running PHP on.

Table 1. Font file format

	byte position
	C data type
	description

	byte 0-3
	int
	number of characters in the font

	byte 4-7
	int
	 value of first character in the font (often 32 for space)

	byte 8-11
	int
	pixel width of each character

	byte 12-15
	int
	pixel height of each character

	byte 16-
	char
	 array with character data, one byte per pixel in each character, for a total of (nchars*width*height) bytes.

 See also ImageFontWidth() and ImageFontHeight().

ImagePolygon (PHP3 , PHP4)

Draw a polygon

int imagepolygon (int im, array points, int num_points, int col)

 ImagePolygon() creates a polygon in image id. Points is a PHP array containing the polygon's vertices, ie. points[0] = x0, points[1] = y0, points[2] = x1, points[3] = y1, etc. Num_points is the total number of vertices.

 See also imagecreate().

ImagePSBBox (PHP3 >= 3.0.9, PHP4 >= 4.0RC1)

 Give the bounding box of a text rectangle using PostScript Type1 fonts

array imagepsbbox (string text, int font, int size [, int space [, int tightness [, float angle]]])

 Size is expressed in pixels.

 Space allows you to change the default value of a space in a font. This amount is added to the normal value and can also be negative.

 Tightness allows you to control the amount of white space between characters. This amount is added to the normal character width and can also be negative.

 Angle is in degrees.

 Parameters space and tightness are expressed in character space units, where 1 unit is 1/1000th of an em-square.

 Parameters space, tightness, and angle are optional.

 The bounding box is calculated using information available from character metrics, and unfortunately tends to differ slightly from the results achieved by actually rasterizing the text. If the angle is 0 degrees, you can expect the text to need 1 pixel more to every direction.

 This function returns an array containing the following elements:

	0
	lower left x-coordinate

	1
	lower left y-coordinate

	2
	upper right x-coordinate

	3
	upper right y-coordinate

 See also imagepstext().

ImagePSEncodeFont (PHP3 >= 3.0.9, PHP4 >= 4.0RC1)

 Change the character encoding vector of a font

int imagepsencodefont (string encodingfile)

 Loads a character encoding vector from from a file and changes the fonts encoding vector to it. As a PostScript fonts default vector lacks most of the character positions above 127, you'll definitely want to change this if you use an other language than english. The exact format of this file is described in T1libs documentation. T1lib comes with two ready-to-use files, IsoLatin1.enc and IsoLatin2.enc.

 If you find yourself using this function all the time, a much better way to define the encoding is to set ps.default_encoding in the configuration file to point to the right encoding file and all fonts you load will automatically have the right encoding.

ImagePSFreeFont (PHP3 >= 3.0.9, PHP4 >= 4.0RC1)

Free memory used by a PostScript Type 1 font

void imagepsfreefont (int fontindex)

 See also ImagePSLoadFont().

ImagePSLoadFont (PHP3 >= 3.0.9, PHP4 >= 4.0RC1)

Load a PostScript Type 1 font from file

int imagepsloadfont (string filename)

 In the case everything went right, a valid font index will be returned and can be used for further purposes. Otherwise the function returns false and prints a message describing what went wrong.

 See also ImagePSFreeFont().

ImagePsExtendFont (PHP3 >= 3.0.9, PHP4 >= 4.0RC1)

 Extend or condense a font

bool imagepsextendfont (int font_index, double extend)

 Extend or condense a font (font_index), if the value of the extend parameter is less than one you will be condensing the font.

ImagePsSlantFont (PHP3 >= 3.0.9, PHP4 >= 4.0RC1)

 Slant a font

bool imagepsslantfont (int font_index, double slant)

 Slant a font given by the font_index parameter with a slant of the value of the slant parameter.

ImagePSText (PHP3 >= 3.0.9, PHP4 >= 4.0RC1)

 To draw a text string over an image using PostScript Type1 fonts

array imagepstext (int image, string text, int font, int size, int foreground, int background, int x, int y [, int space [, int tightness [, float angle [, int antialias_steps]]]])

 Size is expressed in pixels.

 Foreground is the color in which the text will be painted. Background is the color to which the text will try to fade in with antialiasing. No pixels with the color background are actually painted, so the background image does not need to be of solid color.

 The coordinates given by x, y will define the origin (or reference point) of the first character (roughly the lower-left corner of the character). This is different from the ImageString(), where x, y define the upper-right corner of the first character. Refer to PostScipt documentation about fonts and their measuring system if you have trouble understanding how this works.

 Space allows you to change the default value of a space in a font. This amount is added to the normal value and can also be negative.

 Tightness allows you to control the amount of white space between characters. This amount is added to the normal character width and can also be negative.

 Angle is in degrees.

 Antialias_steps allows you to control the number of colours used for antialiasing text. Allowed values are 4 and 16. The higher value is recommended for text sizes lower than 20, where the effect in text quality is quite visible. With bigger sizes, use 4. It's less computationally intensive.

 Parameters space and tightness are expressed in character space units, where 1 unit is 1/1000th of an em-square.

 Parameters space, tightness, angle and antialias are optional.

 This function returns an array containing the following elements:

	0
	lower left x-coordinate

	1
	lower left y-coordinate

	2
	upper right x-coordinate

	3
	upper right y-coordinate

 See also imagepsbbox().

ImageRectangle (PHP3 , PHP4)

Draw a rectangle

int imagerectangle (int im, int x1, int y1, int x2, int y2, int col)

 ImageRectangle() creates a rectangle of color col in image im starting at upper left coordinate x1, y1 and ending at bottom right coordinate x2, y2. 0, 0 is the top left corner of the image.

ImageSetPixel (PHP3 , PHP4)

Set a single pixel

int imagesetpixel (int im, int x, int y, int col)

 ImageSetPixel() draws a pixel at x, y (top left is 0, 0) in image im of color col.

 See also ImageCreate() and ImageColorAllocate().

ImageString (PHP3 , PHP4)

Draw a string horizontally

int imagestring (int im, int font, int x, int y, string s, int col)

 ImageString() draws the string s in the image identified by im at coordinates x, y (top left is 0, 0) in color col. If font is 1, 2, 3, 4 or 5, a built-in font is used.

 See also ImageLoadFont().

ImageStringUp (PHP3 , PHP4)

Draw a string vertically

int imagestringup (int im, int font, int x, int y, string s, int col)

 ImageStringUp() draws the string s vertically in the image identified by im at coordinates x, y (top left is 0, 0) in color col. If font is 1, 2, 3, 4 or 5, a built-in font is used.

 See also ImageLoadFont().

ImageSX (PHP3 , PHP4)

Get image width

int imagesx (int im)

 ImageSX() returns the width of the image identified by im.

 See also ImageCreate() and ImageSY().

ImageSY (PHP3 , PHP4)

Get image height

int imagesy (int im)

 ImageSY() returns the height of the image identified by im.

 See also ImageCreate() and ImageSX().

ImageTTFBBox (PHP3 >= 3.0.1, PHP4)

 Give the bounding box of a text using TypeType fonts

array imagettfbbox (int size, int angle, string fontfile, string text)

 This function calculates and returns the bounding box in pixels for a TrueType text.

 text

The string to be measured.

 size

The font size.

 fontfile

 The name of the TrueType font file. (Can also be an URL.)

 angle

 Angle in degrees in which text will be measured.

 ImageTTFBBox() returns an array with 8 elements representing four points making the bounding box of the text:

	0
	lower left corner, X position

	1
	lower left corner, Y position

	2
	lower right corner, X position

	3
	lower right corner, Y position

	4
	upper right corner, X position

	5
	upper right corner, Y position

	6
	upper left corner, X position

	7
	upper left corner, Y position

 The points are relative to the text regardless of the angle, so "upper left" means in the top left-hand corner seeing the text horizontallty.

 This function requires both the GD library and the FreeType library.

 See also ImageTTFText().

ImageTTFText (PHP3 , PHP4)

 Write text to the image using TrueType fonts

array imagettftext (int im, int size, int angle, int x, int y, int col, string fontfile, string text)

 ImageTTFText() draws the string text in the image identified by im, starting at coordinates x, y (top left is 0, 0), at an angle of angle in color col, using the TrueType font file identified by fontfile.

 The coordinates given by x, y will define the basepoint of the first character (roughly the lower-left corner of the character). This is different from the ImageString(), where x, y define the upper-right corner of the first character.

 Angle is in degrees, with 0 degrees being left-to-right reading text (3 o'clock direction), and higher values representing a counter-clockwise rotation. (i.e., a value of 90 would result in bottom-to-top reading text).

 Fontfile is the path to the TrueType font you wish to use.

 Text is the text string which may include UTF-8 character sequences (of the form: {) to access characters in a font beyond the first 255.

 Col is the color index. Using the negative of a color index has the effect of turning off antialiasing.

 ImageTTFText() returns an array with 8 elements representing four points making the bounding box of the text. The order of the points is upper left, upper right, lower right, lower left. The points are relative to the text regardless of the angle, so "upper left" means in the top left-hand corner when you see the text horizontallty.

 This example script will produce a black GIF 400x30 pixels, with the words "Testing..." in white in the font Arial.

Example 1. ImageTTFText

<?php

Header ("Content-type: image/gif");

$im = imagecreate (400, 30);

$black = ImageColorAllocate ($im, 0, 0, 0);

$white = ImageColorAllocate ($im, 255, 255, 255);

ImageTTFText ($im, 20, 0, 10, 20, $white, "/path/arial.ttf",

 "Testing... Omega: Ω");

ImageGif ($im);

ImageDestroy ($im);

?>

 This function requires both the GD library and the FreeType (http://www.freetype.org/) library.

 See also ImageTTFBBox().

ImageTypes (PHP4 CVS only)

 Return the image types supported by this PHP build

int imagetypes(void);

 This function returns a bit-field corresponding to the image formats supported by the version of GD linked into PHP. The following bits are returned, IMG_GIF | IMG_JPG | IMG_PNG | IMG_WBMP. To check for PNG support, for example, do this:

Example 1. ImageTypes

<?php

if (ImageTypes() & IMG_PNG) {

 echo "PNG Support is enabled";

}

?>

read_exif_data (PHP4 >= 4.0.1)

Read the EXIF headers from a JPEG

array read_exif_data (string filename)

 The read_exif_data() function reads the EXIF headers from a JPEG image file. It returns an associative array where the indexes are the Exif header names and the values are the values associated with those Exif headers. Exif headers tend to be present in JPEG images generated by digital cameras, but unfortunately each digital camera maker has a different idea of how to actually tag their images, so you can't always rely on a specific Exif header being present.

Example 1. read_exif_data

<?php

 $exif = read_exif_data ('p0001807.jpg');

 while(list($k,$v)=each($exif)) {

 echo "$k: $v
\n";

 }

?>

Output:

FileName: p0001807.jpg

FileDateTime: 929353056

FileSize: 378599

CameraMake: Eastman Kodak Company

CameraModel: KODAK DC265 ZOOM DIGITAL CAMERA (V01.00)

DateTime: 1999:06:14 01:37:36

Height: 1024

Width: 1536

IsColor: 1

FlashUsed: 0

FocalLength: 8.0mm

RawFocalLength: 8

ExposureTime: 0.004 s (1/250)

RawExposureTime: 0.0040000001899898

ApertureFNumber: f/ 9.5

RawApertureFNumber: 9.5100002288818

FocusDistance: 16.66m

RawFocusDistance: 16.659999847412

Orientation: 1

ExifVersion: 0200

Note: This function is only available in PHP4 compiled using --enable-exif

This function does not require the GD image library.

XXVIII. IMAP, POP3 and NNTP functions

 To get these functions to work, you have to compile PHP with --with-imap. That requires the c-client library to be installed. Grab the latest version from ftp://ftp.cac.washington.edu/imap/ and compile it. Then copy c-client/c-client.a to /usr/local/lib/libc-client.a or some other directory on your link path and copy c-client/rfc822.h, mail.h and linkage.h to /usr/local/include or some other directory in your include path.

 Note that these functions are not limited to the IMAP protocol, despite their name. The underlying c-client library also supports NNTP, POP3 and local mailbox access methods.

 This document can't go into detail on all the topics touched by the provided functions. Further information is provided by the documentation of the c-client library source (docs/internal.txt). and the following RFC documents:

•
 RFC821 (http://www.faqs.org/rfcs/rfc821.html): Simple Mail Transfer Protocol (SMTP).

•
 RFC822 (http://www.faqs.org/rfcs/rfc822.html): Standard for ARPA internet text messages.

•
 RFC2060 (http://www.faqs.org/rfcs/rfc2060.html): Internet Message Access Protocol (IMAP) Version 4rev1.

•
 RFC1939 (http://www.faqs.org/rfcs/rfc1939.html): Post Office Protocol Version 3 (POP3).

•
 RFC977 (http://www.faqs.org/rfcs/rfc977.html): Network News Transfer Protocol (NNTP).

•
 RFC2076 (http://www.faqs.org/rfcs/rfc2076.html): Common Internet Message Headers.

•
 RFC2045 (http://www.faqs.org/rfcs/rfc2045.html) , RFC2046 (http://www.faqs.org/rfcs/rfc2046.html) , RFC2047 (http://www.faqs.org/rfcs/rfc2047.html) , RFC2048 (http://www.faqs.org/rfcs/rfc2048.html) & RFC2049 (http://www.faqs.org/rfcs/rfc2049.html): Multipurpose Internet Mail Extensions (MIME).

 A detailed overview is also available in the book Programming Internet Email (http://www.oreilly.com/catalog/progintemail/noframes.html) by David Wood.

imap_append (PHP3 , PHP4)

 Append a string message to a specified mailbox

int imap_append (int imap_stream, string mbox, string message [, string flags])

 Returns true on sucess, false on error.

 imap_append() appends a string message to the specified mailbox mbox. If the optional flags is specified, writes the flags to that mailbox also.

 When talking to the Cyrus IMAP server, you must use "\r\n" as your end-of-line terminator instead of "\n" or the operation will fail.

Example 1. imap_append() example

$stream = imap_open("{your.imap.host}INBOX.Drafts","username", "password");

$check = imap_check($stream);

print "Msg Count before append: ". $check->Nmsgs."\n";

imap_append($stream,"{your.imap.host}INBOX.Drafts"

 ,"From: me@my.host\r\n"

 ."To: you@your.host\r\n"

 ."Subject: test\r\n"

 ."\r\n"

 ."this is a test message, please ignore\r\n"

);

$check = imap_check($stream);

print "Msg Count after append : ". $check->Nmsgs."\n";

imap_close($stream);

imap_base64 (PHP3 , PHP4)

Decode BASE64 encoded text

string imap_base64 (string text)

 imap_base64() function decodes BASE-64 encoded text (see RFC2045 (http://www.faqs.org/rfcs/rfc2045.html), Section 6.8). The decoded message is returned as a string.

 See also imap_binary().

imap_body (PHP3 , PHP4)

Read the message body

string imap_body (int imap_stream, int msg_number [, int flags])

 imap_body() returns the body of the message, numbered msg_number in the current mailbox. The optional flags are a bit mask with one or more of the following:

•
 FT_UID - The msgno is a UID

•
 FT_PEEK - Do not set the \Seen flag if not already set

•
 FT_INTERNAL - The return string is in internal format, will not canonicalize to CRLF.

imap_check (PHP3 , PHP4)

Check current mailbox

object imap_check (int imap_stream)

 Returns information about the current mailbox. Returns FALSE on failure.

 The imap_check() function checks the current mailbox status on the server and returns the information in an object with following properties:

•
 Date - last change of mailbox contents

•
 Driver - protocol used to access this mailbox: POP3, IMAP, NNTP

•
 Mailbox - the mailbox name

•
 Nmsgs - number of messages in the mailbox

•
 Recent - number of recent messages in the mailbox

imap_close (PHP3 , PHP4)

Close an IMAP stream

int imap_close (int imap_stream [, int flags])

 Close the imap stream. Takes an optional flag CL_EXPUNGE, which will silently expunge the mailbox before closing, removing all messages marked for deletion.

imap_createmailbox (PHP3 , PHP4)

Create a new mailbox

int imap_createmailbox (int imap_stream, string mbox)

 imap_createmailbox() creates a new mailbox specified by mbox. Names containing international characters should be encoded by imap_utf7_encode()

 Returns true on success and false on error.

 See also imap_renamemailbox(), imap_deletemailbox() and imap_open() for the format of mbox names.

Example 1. imap_createmailbox() example

$mbox = imap_open("{your.imap.host}","username","password",OP_HALFOPEN)

 || die("can't connect: ".imap_last_error());

$name1 = "phpnewbox";

$name2 = imap_utf7_encode("phpnewböx");

$newname = $name1;

echo "Newname will be '$name1'
\n";

we will now create a new mailbox "phptestbox" in your inbox folder,

check its status after creation and finaly remove it to restore

your inbox to its initial state

if(@imap_createmailbox($mbox,imap_utf7_encode("{your.imap.host}INBOX.$newname"))) {

 $status = @imap_status($mbox,"{your.imap.host}INBOX.$newname",SA_ALL);

 if($status) {

 print("your new mailbox '$name1' has the following status:
\n");

 print("Messages: ". $status->messages)."
\n";

 print("Recent: ". $status->recent)."
\n";

 print("Unseen: ". $status->unseen)."
\n";

 print("UIDnext: ". $status->uidnext)."
\n";

 print("UIDvalidity:". $status->uidvalidity)."
\n";

 if(imap_renamemailbox($mbox,"{your.imap.host}INBOX.$newname","{your.imap.host}INBOX.$name2")) {

 echo "renamed new mailbox from '$name1' to '$name2'
\n";

 $newname=$name2;

 } else {

 print "imap_renamemailbox on new mailbox failed: ".imap_last_error()."
\n";

 }

 } else {

 print "imap_status on new mailbox failed: ".imap_last_error()."
\n";

 }

 if(@imap_deletemailbox($mbox,"{your.imap.host}INBOX.$newname")) {

 print "new mailbox removed to restore initial state
\n";

 } else {

 print "imap_deletemailbox on new mailbox failed: ".implode("
\n",imap_errors())."
\n";

 }

} else {

 print "could not create new mailbox: ".implode("
\n",imap_errors())."
\n";

}

imap_close($mbox);

imap_delete (PHP3 , PHP4)

 Mark a messge for deletion from current mailbox

int imap_delete (int imap_stream, int msg_number [, int flags])

 Returns true.

 imap_delete() function marks message pointed by msg_number for deletion. The optional flags parameter only has a single option, FT_UID, which tells the function to treat the msg_number argument as a UID. Messages marked for deletion will stay in the mailbox until either imap_expunge() is called or imap_close() is called with the optional parameter CL_EXPUNGE.

Example 1. Imap_delete() Beispiel

$mbox = imap_open ("{your.imap.host}INBOX", "username", "password")

 || die ("can't connect: " . imap_last_error());

$check = imap_mailboxmsginfo ($mbox);

print "Messages before delete: " . $check->Nmsgs . "
\n" ;

imap_delete ($mbox, 1);

$check = imap_mailboxmsginfo ($mbox);

print "Messages after delete: " . $check->Nmsgs . "
\n" ;

imap_expunge ($mbox);

$check = imap_mailboxmsginfo ($mbox);

print "Messages after expunge: " . $check->Nmsgs . "
\n" ;

imap_close ($mbox);

imap_deletemailbox (PHP3 , PHP4)

Delete a mailbox

int imap_deletemailbox (int imap_stream, string mbox)

 imap_deletemailbox() deletes the specified mailbox (see imap_open() for the format of mbox names).

 Returns true on success and false on error.

 See also imap_createmailbox(), imap_renamemailbox(), and imap_open() for the format of mbox.

imap_expunge (PHP3 , PHP4)

Delete all messages marked for deletion

int imap_expunge (int imap_stream)

 imap_expunge() deletes all the messages marked for deletion by imap_delete(), imap_mail_move(), or imap_setflag_full().

 Returns true.

imap_fetchbody (PHP3 , PHP4)

 Fetch a particular section of the body of the message

string imap_fetchbody (int imap_stream, int msg_number, string part_number [, flags flags])

 This function causes a fetch of a particular section of the body of the specified messages as a text string and returns that text string. The section specification is a string of integers delimited by period which index into a body part list as per the IMAP4 specification. Body parts are not decoded by this function.

 The options for imap_fetchbody() is a bitmask with one or more of the following:

•
 FT_UID - The msg_number is a UID

•
 FT_PEEK - Do not set the \Seen flag if not already set

•
 FT_INTERNAL - The return string is in "internal" format, without any attempt to canonicalize CRLF.

imap_fetchstructure (PHP3 , PHP4)

 Read the structure of a particular message

object imap_fetchstructure (int imap_stream, int msg_number [, int flags])

 This function fetches all the structured information for a given message. The optional flags parameter only has a single option, FT_UID, which tells the function to treat the msg_number argument as a UID. The returned object includes the envelope, internal date, size, flags and body structure along with a similar object for each mime attachement. The structure of the returned objects is as follows:

Table 1. Returned Objects for imap_fetchstructure()

	type
	Primary body type

	encoding
	Body transfer encoding

	ifsubtype
	True if there is a subtype string

	subtype
	MIME subtype

	ifdescription
	True if there is a description string

	description
	Content description string

	ifid
	True if there is an identification string

	id
	Identification string

	lines
	Number of lines

	bytes
	Number of bytes

	ifdisposition
	True if there is a disposition string

	disposition
	Disposition string

	ifdparameters
	True if the dparameters array exists

	dparameters
	Disposition parameter array

	ifparameters
	True if the parameters array exists

	parameters
	MIME parameters array

	parts
	Array of objects describing each message part

1.
 dparameters is an array of objects where each object has an "attribute" and a "value" property.

2.
 Parameter is an array of objects where each object has an "attributte" and a "value" property.

3.
 Parts is an array of objects identical in structure to the top-level object, with the limitation that it cannot contain further 'parts' objects.

Table 2. Primary body type

	0
	text

	1
	multipart

	2
	message

	3
	application

	4
	audio

	5
	image

	6
	video

	7
	other

Table 3. Transfer encodings

	0
	7BIT

	1
	8BIT

	2
	BINARY

	3
	BASE64

	4
	QUOTED-PRINTABLE

	5
	OTHER

imap_header (PHP3 , PHP4)

Read the header of the message

object imap_header (int imap_stream, int msg_number [, int fromlength [, int subjectlength [, string defaulthost]]])

 This function returns an object of various header elements.

 remail, date, Date, subject, Subject, in_reply_to, message_id,

 newsgroups, followup_to, references

message flags:

 Recent - 'R' if recent and seen,

 'N' if recent and not seen,

 ' ' if not recent

 Unseen - 'U' if not seen AND not recent,

 ' ' if seen OR not seen and recent

 Answered -'A' if answered,

 ' ' if unanswered

 Deleted - 'D' if deleted,

 ' ' if not deleted

 Draft - 'X' if draft,

 ' ' if not draft

 Flagged - 'F' if flagged,

 ' ' if not flagged

NOTE that the Recent/Unseen behavior is a little odd. If you want to

know if a message is Unseen, you must check for

Unseen == 'U' || Recent == 'N'

toaddress (full to: line, up to 1024 characters)

to[] (returns an array of objects from the To line, containing):

 personal

 adl

 mailbox

 host

fromaddress (full from: line, up to 1024 characters)

from[] (returns an array of objects from the From line, containing):

 personal

 adl

 mailbox

 host

ccaddress (full cc: line, up to 1024 characters)

cc[] (returns an array of objects from the Cc line, containing):

 personal

 adl

 mailbox

 host

bccaddress (full bcc line, up to 1024 characters)

bcc[] (returns an array of objects from the Bcc line, containing):

 personal

 adl

 mailbox

 host

reply_toaddress (full reply_to: line, up to 1024 characters)

reply_to[] (returns an array of objects from the Reply_to line,

containing):

 personal

 adl

 mailbox

 host

senderaddress (full sender: line, up to 1024 characters)

sender[] (returns an array of objects from the sender line, containing):

 personal

 adl

 mailbox

 host

return_path (full return-path: line, up to 1024 characters)

return_path[] (returns an array of objects from the return_path line,

containing):

 personal

 adl

 mailbox

 host

udate (mail message date in unix time)

fetchfrom (from line formatted to fit fromlength

characters)

fetchsubject (subject line formatted to fit subjectlength characters)

imap_rfc822_parse_headers (PHP4 >= 4.0RC1)

Parse mail headers from a string

object imap_rfc822_parse_headers (string headers [, string defaulthost])

 This function returns an object of various header elements, similar to imap_header(), except without the flags and other elements that come from the IMAP server.

imap_headers (PHP3 , PHP4)

 Returns headers for all messages in a mailbox

array imap_headers (int imap_stream)

 Returns an array of string formatted with header info. One element per mail message.

imap_listmailbox (PHP3 , PHP4)

Read the list of mailboxes

array imap_listmailbox (int imap_stream, string ref, string pattern)

 Returns an array containing the names of the mailboxes. See imap_getmailboxes() for a description of ref and pattern.

Example 1. imap_getmailboxes() example

$mbox = imap_open("{your.imap.host}","username","password",OP_HALFOPEN)

 || die("can't connect: ".imap_last_error());

$list = imap_listmailbox($mbox,"{your.imap.host}","*");

if(is_array($list)) {

 reset($list);

 while (list($key, $val) = each($list))

 print imap_utf7_decode($val)."
\n";

} else

 print "imap_listmailbox failed: ".imap_last_error()."\n";

imap_close($mbox);

imap_getmailboxes (PHP3 >= 3.0.12, PHP4 >= 4.0b4)

 Read the list of mailboxes, returning detailed information on each one

array imap_getmailboxes (int imap_stream, string ref, string pattern)

 Returns an array of objects containing mailbox information. Each object has the attributes name, specifying the full name of the mailbox; delimiter, which is the hierarchy delimiter for the part of the hierarchy this mailbox is in; and attributes. Attributes is a bitmask that can be tested against:

•
 LATT_NOINFERIORS - This mailbox has no "children" (there are no mailboxes below this one).

•
 LATT_NOSELECT - This is only a container, not a mailbox - you cannot open it.

•
 LATT_MARKED - This mailbox is marked. Only used by UW-IMAPD.

•
 LATT_UNMARKED - This mailbox is not marked. Only used by UW-IMAPD.

 Mailbox names containing international Characters outside the printable ASCII range will be encoded and may be decoded by imap_utf7_decode().

 ref should normally be just the server specification as described in imap_open(), and pattern specifies where in the mailbox hierarchy to start searching. If you want all mailboxes, pass '*' for pattern.

 There are two special characters you can pass as part of the pattern: '*' and '%'. '*' means to return all mailboxes. If you pass pattern as '*', you will get a list of the entire mailbox hierarchy. '%' means to return the current level only. '%' as the pattern parameter will return only the top level mailboxes; '~/mail/%' on UW_IMAPD will return every mailbox in the ~/mail directory, but none in subfolders of that directory.

Example 1. imap_getmailboxes() example

$mbox = imap_open("{your.imap.host}","username","password",OP_HALFOPEN)

 || die("can't connect: ".imap_last_error());

$list = imap_getmailboxes($mbox,"{your.imap.host}","*");

if(is_array($list)) {

 reset($list);

 while (list($key, $val) = each($list))

 {

 print "($key) ";

 print imap_utf7_decode($val->name).",";

 print "'".$val->delimiter."',";

 print $val->attributes."
\n";

 }

} else

 print "imap_getmailboxes failed: ".imap_last_error()."\n";

imap_close($mbox);

imap_listsubscribed (PHP3 , PHP4)

List all the subscribed mailboxes

array imap_listsubscribed (int imap_stream, string ref, string pattern)

 Returns an array of all the mailboxes that you have subscribed. This is almost identical to imap_listmailbox(), but will only return mailboxes the user you logged in as has subscribed.

imap_getsubscribed (PHP3 >= 3.0.12, PHP4 >= 4.0b4)

List all the subscribed mailboxes

array imap_getsubscribed (int imap_stream, string ref, string pattern)

 This function is identical to imap_getmailboxes(), except that it only returns mailboxes that the user is subscribed to.

imap_mail_copy (PHP3 , PHP4)

Copy specified messages to a mailbox

int imap_mail_copy (int imap_stream, string msglist, string mbox [, int flags])

 Returns true on success and false on error.

 Copies mail messages specified by msglist to specified mailbox. msglist is a range not just message numbers (as described in RFC2060 (http://www.faqs.org/rfcs/rfc2060.html)).

 Flags is a bitmask of one or more of

•
 CP_UID - the sequence numbers contain UIDS

•
 CP_MOVE - Delete the messages from the current mailbox after copying

imap_mail_move (PHP3 , PHP4)

Move specified messages to a mailbox

int imap_mail_move (int imap_stream, string msglist, string mbox [, int flags])

 Moves mail messages specified by msglist to specified mailbox. msglist is a range not just message numbers (as described in RFC2060 (http://www.faqs.org/rfcs/rfc2060.html)).

 Flags is a bitmask and may contain the single option

•
 CP_UID - the sequence numbers contain UIDS

 Returns true on success and false on error.

imap_num_msg (PHP3 , PHP4)

 Gives the number of messages in the current mailbox

int imap_num_msg (int imap_stream)

 Return the number of messages in the current mailbox.

imap_num_recent (PHP3 , PHP4)

Gives the number of recent messages in current mailbox

int imap_num_recent (int imap_stream)

 Returns the number of recent messages in the current mailbox.

imap_open (PHP3 , PHP4)

Open an IMAP stream to a mailbox

int imap_open (string mailbox, string username, string password [, int flags])

 Returns an IMAP stream on success and false on error. This function can also be used to open streams to POP3 and NNTP servers, but some functions and features are not available on IMAP servers.

 A mailbox name consists of a server part and a mailbox path on this server. The special name INBOX stands for the current users personal mailbox. The server part, which is enclosed in '{' and '}', consists of the servers name or ip address, a protocol secification (beginning with '/') and an optional port specifier beginnung with ':'. The server part is mandatory in all mailbox parameters. Mailbos names that contain international characters besides those in the printable ASCII space have to be encoded with imap_utf7_encode().

 The options are a bit mask with one or more of the following:

•
 OP_READONLY - Open mailbox read-only

•
 OP_ANONYMOUS - Dont use or update a .newsrc for news (NNTP only)

•
 OP_HALFOPEN - For IMAP and NNTP names, open a connection but dont open a mailbox

•
 CL_EXPUNGE - Expunge mailbox automatically upon mailbox close

 To connect to an IMAP server running on port 143 on the local machine, do the following:

$mbox = imap_open ("{localhost:143}INBOX", "user_id", "password");

 To connect to a POP3 server on port 110 on the local server, use:

$mbox = imap_open ("{localhost/pop3:110}INBOX", "user_id", "password");

 To connect to an NNTP server on port 119 on the local server, use:

$nntp = imap_open ("{localhost/nntp:119}comp.test", "", "");

 To connect to a remote server replace "localhost" with the name or the IP address of the server you want to connect to.

Example 1. imap_open() example

$mbox = imap_open ("{your.imap.host:143}", "username", "password");

echo "<p><h1>Mailboxes</h1>\n";

$folders = imap_listmailbox ($mbox, "{your.imap.host:143}", "*");

if ($folders == false) {

 echo "Call failed
\n";

} else {

 while (list ($key, $val) = each ($folders)) {

 echo $val."
\n";

 }

}

echo "<p><h1>Headers in INBOX</h1>\n";

$headers = imap_headers ($mbox);

if ($headers == false) {

 echo "Call failed
\n";

} else {

 while (list ($key,$val) = each ($headers)) {

 echo $val."
\n";

 }

}

imap_close($mbox);

imap_ping (PHP3 , PHP4)

Check if the IMAP stream is still active

int imap_ping (int imap_stream)

 Returns true if the stream is still alive, false otherwise.

 imap_ping() function pings the stream to see it is still active. It may discover new mail; this is the preferred method for a periodic "new mail check" as well as a "keep alive" for servers which have inactivity timeout. (As PHP scripts do not tend to run that long, i can hardly imagine that this function will be usefull to anyone.)

imap_renamemailbox (PHP3 , PHP4)

Rename an old mailbox to new mailbox

int imap_renamemailbox (int imap_stream, string old_mbox, string new_mbox)

 This function renames on old mailbox to new mailbox (see imap_open() for the format of mbox names).

 Returns true on success and false on error.

 See also imap_createmailbox(), imap_deletemailbox(), and imap_open() for the format of mbox.

imap_reopen (PHP3 , PHP4)

Reopen IMAP stream to new mailbox

int imap_reopen (int imap_stream, string mailbox [, string flags])

 This function reopens the specified stream to a new mailbox on an IMAP or NNTP server.

 The options are a bit mask with one or more of the following:

•
 OP_READONLY - Open mailbox read-only

•
 OP_ANONYMOUS - Dont use or update a .newsrc for news (NNTP only)

•
 OP_HALFOPEN - For IMAP and NNTP names, open a connection but dont open a mailbox.

•
 CL_EXPUNGE - Expunge mailbox automatically upon mailbox close (see also imap_delete() and imap_expunge())

 Returns true on success and false on error.

imap_subscribe (PHP3 , PHP4)

Subscribe to a mailbox

int imap_subscribe (int imap_stream, string mbox)

 Subscribe to a new mailbox.

 Returns true on success and false on error.

imap_undelete (PHP3 , PHP4)

 Unmark the message which is marked deleted

int imap_undelete (int imap_stream, int msg_number)

 This function removes the deletion flag for a specified message, which is set by imap_delete() or imap_mail_move().

 Returns true on success and false on error.

imap_unsubscribe (PHP3 , PHP4)

Unsubscribe from a mailbox

int imap_unsubscribe (int imap_stream, string mbox)

 Unsubscribe from a specified mailbox.

 Returns true on success and false on error.

imap_qprint (PHP3 , PHP4)

Convert a quoted-printable string to an 8 bit string

string imap_qprint (string string)

 Convert a quoted-printable string to an 8 bit string (according to RFC2045 (http://www.faqs.org/rfcs/rfc2045.html), section 6.7).

 Returns an 8 bit (binary) string.

 See also imap_8bit().

imap_8bit (PHP3 , PHP4)

 Convert an 8bit string to a quoted-printable string

string imap_8bit (string string)

 Convert an 8bit string to a quoted-printable string (according to RFC2045 (http://www.faqs.org/rfcs/rfc2045.html), section 6.7).

 Returns a quoted-printable string.

 See also imap_qprint().

imap_binary (PHP3 >= 3.0.2, PHP4)

 Convert an 8bit string to a base64 string

string imap_binary (string string)

 Convert an 8bit string to a base64 string (according to RFC2045 (http://www.faqs.org/rfcs/rfc2045.html), Section 6.8).

 Returns a base64 string.

 See also imap_base64().

imap_scanmailbox (PHP3 , PHP4)

 Read the list of mailboxes, takes a string to search for in the text of the mailbox

array imap_scanmailbox (int imap_stream, string content)

 Returns an array containing the names of the mailboxes that have string in the text of the mailbox. This function is simmilar to imap_listmailbox(), but it will additionally check for the presence of the string content inside the mailbox data.

imap_mailboxmsginfo (PHP3 >= 3.0.2, PHP4)

Get information about the current mailbox

object imap_mailboxmsginfo (int imap_stream)

 Returns information about the current mailbox. Returns FALSE on failure.

 The imap_mailboxmsginfo() function checks the current mailbox status on the server. It is similar to imap_status(), but will additionally sum up the size of all messages in the mailbox, which will take some additional time to execute. It returns the information in an object with following properties.

Table 1. Mailbox properties

	Date
	date of last change

	Driver
	driver

	Mailbox
	name of the mailbox

	Nmsgs
	number of messages

	Recent
	number of recent messages

	Unread
	number of unread messages

	Deleted
	number of deleted messages

	Size
	mailbox size

Example 1. imap_mailboxmsginfo() example

<?php

$mbox = imap_open("{your.imap.host}INBOX","username", "password")

 || die("can't connect: ".imap_last_error());

$check = imap_mailboxmsginfo($mbox);

if($check) {

 print "Date: " . $check->Date ."
\n" ;

 print "Driver: " . $check->Driver ."
\n" ;

 print "Mailbox: " . $check->Mailbox ."
\n" ;

 print "Messages: ". $check->Nmsgs ."
\n" ;

 print "Recent: " . $check->Recent ."
\n" ;

 print "Unread: " . $check->Unread ."
\n" ;

 print "Deleted: " . $check->Deleted ."
\n" ;

 print "Size: " . $check->Size ."
\n" ;

} else {

 print "imap_check() failed: ".imap_lasterror(). "
\n";

}

imap_close($mbox);

?>

imap_rfc822_write_address (PHP3 >= 3.0.2, PHP4)

 Returns a properly formatted email address given the mailbox, host, and personal info.

string imap_rfc822_write_address (string mailbox, string host, string personal)

 Returns a properly formatted email address as defined in RFC822 (http://www.faqs.org/rfcs/rfc822.html) given the mailbox, host, and personal info.

Example 1. imap_rfc822_write_address() example

print imap_rfc822_write_address("hartmut","cvs.php.net","Hartmut Holzgraefe")."\n";

imap_rfc822_parse_adrlist (PHP3 >= 3.0.2, PHP4)

Parses an address string

array imap_rfc822_parse_adrlist (string address, string default_host)

 This function parses the address string as defined in RFC822 (http://www.faqs.org/rfcs/rfc822.html) and for each address, returns an array of objects. The objects properties are:

•
 mailbox - the mailbox name (username)

•
 host - the host name

•
 personal - the personal name

•
 adl - at domain source route

Example 1. imap_rfc822_parse_adrlist() example

$address_string = "Hartmut Holzgraefe <hartmut@cvs.php.net>, postmaster@somedomain.net, root";

$address_array = imap_rfc822_parse_adrlist($address_string,"somedomain.net");

if(! is_array($address_array)) die("somethings wrong\n");

reset($address_array);

while(list($key,$val)=each($address_array)){

 print "mailbox : ".$val->mailbox."
\n";

 print "host : ".$val->host."
\n";

 print "personal: ".$val->personal."
\n";

 print "adl : ".$val->adl."<p>\n";

}

imap_setflag_full (PHP3 >= 3.0.3, PHP4)

Sets flags on messages

string imap_setflag_full (int stream, string sequence, string flag, string options)

 This function causes a store to add the specified flag to the flags set for the messages in the specified sequence.

 The flags which you can set are "\\Seen", "\\Answered", "\\Flagged", "\\Deleted", "\\Draft", and "\\Recent" (as defined by RFC2060).

 The options are a bit mask with one or more of the following:

ST_UID The sequence argument contains UIDs instead of

 sequence numbers

Example 1. imap_setflag_full() example

$mbox = imap_open("{your.imap.host:143}","username","password")

 || die("can't connect: ".imap_last_error());

$status = imap_setflag_full($mbox,"2,5","\\Seen \\Flagged");

print gettype($status)."\n";

print $status."\n";

imap_close($mbox);

imap_clearflag_full (PHP3 >= 3.0.3, PHP4)

Clears flags on messages

string imap_clearflag_full (int stream, string sequence, string flag, string options)

 This function causes a store to delete the specified flag to the flags set for the messages in the specified sequence. The flags which you can unset are "\\Seen", "\\Answered", "\\Flagged", "\\Deleted", "\\Draft", and "\\Recent" (as defined by RFC2060).

 The options are a bit mask with one or more of the following:

ST_UID The sequence argument contains UIDs instead of

 sequence numbers

imap_sort (PHP3 >= 3.0.3, PHP4)

Sort an array of message headers

array imap_sort (int stream, int criteria, int reverse, int options)

 Returns an array of message numbers sorted by the given parameters.

 Reverse is 1 for reverse-sorting.

 Criteria can be one (and only one) of the following:

SORTDATE message Date

SORTARRIVAL arrival date

SORTFROM mailbox in first From address

SORTSUBJECT message Subject

SORTTO mailbox in first To address

SORTCC mailbox in first cc address

SORTSIZE size of message in octets

 The flags are a bitmask of one or more of the following:

SE_UID Return UIDs instead of sequence numbers

SE_NOPREFETCH Don't prefetch searched messages.

imap_fetchheader (PHP3 >= 3.0.3, PHP4)

Returns header for a message

string imap_fetchheader (int imap_stream, int msgno, int flags)

 This function causes a fetch of the complete, unfiltered RFC822 (http://www.faqs.org/rfcs/rfc822.html) format header of the specified message as a text string and returns that text string.

 The options are:

FT_UID The msgno argument is a UID

FT_INTERNAL The return string is in "internal" format,

 without any attempt to canonicalize to CRLF

 newlines

FT_PREFETCHTEXT The RFC822.TEXT should be pre-fetched at the

 same time. This avoids an extra RTT on an

 IMAP connection if a full message text is

 desired (e.g. in a "save to local file"

 operation)

imap_uid (PHP3 >= 3.0.3, PHP4)

 This function returns the UID for the given message sequence number

int imap_uid (int imap_stream, int msgno)

 This function returns the UID for the given message sequence number. An UID is an unique identifier that will not change over time while a message sequence number may change whenever the content of the mailbox changes. This function is the inverse of imap_msgno().

imap_msgno (PHP3 >= 3.0.3, PHP4)

 This function returns the message sequence number for the given UID

int imap_msgno (int imap_stream, int uid)

 This function returns the message sequence number for the given UID. It is the inverse of imap_uid().

imap_search (PHP3 >= 3.0.12, PHP4 >= 4.0b4)

 This function returns an array of messages matching the given search criteria

array imap_search (int imap_stream, string criteria, int flags)

 This function performs a search on the mailbox currently opened in the given imap stream. criteria is a string, delimited by spaces, in which the following keywords are allowed. Any multi-word arguments (eg. FROM "joey smith") must be quoted.

•
 ALL - return all messages matching the rest of the criteria

•
 ANSWERED - match messages with the \\ANSWERED flag set

•
 BCC "string" - match messages with "string" in the Bcc: field

•
 BEFORE "date" - match messages with Date: before "date"

•
 BODY "string" - match messages with "string" in the body of the message

•
 CC "string" - match messages with "string" in the Cc: field

•
 DELETED - match deleted messages

•
 FLAGGED - match messages with the \\FLAGGED (sometimes referred to as Important or Urgent) flag set

•
 FROM "string" - match messages with "string" in the From: field

•
 KEYWORD "string" - match messages with "string" as a keyword

•
 NEW - match new messages

•
 OLD - match old messages

•
 ON "date" - match messages with Date: matching "date"

•
 RECENT - match messages with the \\RECENT flag set

•
 SEEN - match messages that have been read (the \\SEEN flag is set)

•
 SINCE "date" - match messages with Date: after "date"

•
 SUBJECT "string" - match messages with "string" in the Subject:

•
 TEXT "string" - match messages with text "string"

•
 TO "string" - match messages with "string" in the To:

•
 UNANSWERED - match messages that have not been answered

•
 UNDELETED - match messages that are not deleted

•
 UNFLAGGED - match messages that are not flagged

•
 UNKEYWORD "string" - match messages that do not have the keyword "string"

•
 UNSEEN - match messages which have not been read yet

 For example, to match all unanswered messages sent by Mom, you'd use: "UNANSWERED FROM mom". Searches appear to be case insensitive. This list of criteria is from a reading of the UW c-client source code and may be uncomplete or inaccurate (see also RFC2060, section 6.4.4).

 Valid values for flags are SE_UID, which causes the returned array to contain UIDs instead of messages sequence numbers.

imap_last_error (PHP3 >= 3.0.12, PHP4 >= 4.0b4)

 This function returns the last IMAP error (if any) that occurred during this page request

string imap_last_error (void)

 This function returns the full text of the last IMAP error message that occurred on the current page. The error stack is untouched; calling imap_last_error() subsequently, with no intervening errors, will return the same error.

imap_errors (PHP3 >= 3.0.12, PHP4 >= 4.0b4)

 This function returns all of the IMAP errors (if any) that have occurred during this page request or since the error stack was reset.

array imap_errors (void)

 This function returns an array of all of the IMAP error messages generated since the last imap_errors() call, or the beginning of the page. When imap_errors() is called, the error stack is subsequently cleared.

imap_alerts (PHP3 >= 3.0.12, PHP4 >= 4.0b4)

 This function returns all IMAP alert messages (if any) that have occurred during this page request or since the alert stack was reset

array imap_alerts (void)

 This function returns an array of all of the IMAP alert messages generated since the last imap_alerts() call, or the beginning of the page. When imap_alerts() is called, the alert stack is subsequently cleared. The IMAP specification requires that these messages be passed to the user.

imap_status (PHP3 >= 3.0.4, PHP4)

 This function returns status information on a mailbox other than the current one

object imap_status (int imap_stream, string mailbox, int options)

 This function returns an object containing status information. Valid flags are:

•
 SA_MESSAGES - set status->messages to the number of messages in the mailbox

•
 SA_RECENT - set status->recent to the number of recent messages in the mailbox

•
 SA_UNSEEN - set status->unseen to the number of unseen (new) messages in the mailbox

•
 SA_UIDNEXT - set status->uidnext to the next uid to be used in the mailbox

•
 SA_UIDVALIDITY - set status->uidvalidity to a constant that changes when uids for the mailbox may no longer be valid

•
 SA_ALL - set all of the above

 status->flags is also set, which contains a bitmask which can be checked against any of the above constants.

Example 1. imap_status() example

$mbox = imap_open("{your.imap.host}","username","password",OP_HALFOPEN)

 || die("can't connect: ".imap_last_error());

$status = imap_status($mbox,"{your.imap.host}INBOX",SA_ALL);

if($status) {

 print("Messages: ". $status->messages)."
\n";

 print("Recent: ". $status->recent)."
\n";

 print("Unseen: ". $status->unseen)."
\n";

 print("UIDnext: ". $status->uidnext)."
\n";

 print("UIDvalidity:". $status->uidvalidity)."
\n";

} else

 print "imap_status failed: ".imap_lasterror()."\n";

imap_close($mbox);

imap_utf7_decode (PHP3 >= 3.0.15, PHP4 >= 4.0b4)

 Decodes a modified UTF-7 encoded string.

string imap_utf7_decode (string text)

 Decodes modified UTF-7 text into 8bit data.

 Returns the decoded 8bit data, or false if the input string was not valid modified UTF-7. This function is needed to decode mailbox names that contain international characters outside of the printable ASCII range. The modified UTF-7 encoding is defined in RFC 2060 (http://www.faqs.org/rfcs/rfc2060.html), section 5.1.3 (original UTF-7 was defned in RFC1642 (http://www.faqs.org/rfcs/rfc1642.html)).

imap_utf7_encode (PHP3 >= 3.0.15, PHP4 >= 4.0b4)

 Converts 8bit data to modified UTF-7 text.

string imap_utf7_encode (string data)

 Converts 8bit data to modified UTF-7 text. This is needed to encode mailbox names that contain international characters outside of the printable ASCII range. The modified UTF-7 encoding is defined in RFC 2060 (http://www.faqs.org/rfcs/rfc2060.html), section 5.1.3 (original UTF-7 was defned in RFC1642 (http://www.faqs.org/rfcs/rfc1642.html)).

 Returns the modified UTF-7 text.

imap_utf8 (PHP3 >= 3.0.13, PHP4 >= 4.0RC1)

 Converts text to UTF8

string imap_utf8 (string text)

 Converts the given text to UTF8 (as defined in RFC2044 (http://www.faqs.org/rfcs/rfc2044.html)).

imap_fetch_overview (PHP3 >= 3.0.4, PHP4)

 Read an overview of the information in the headers of the given message

array imap_fetch_overview (int imap_stream, string sequence [, int flags])

 This function fetches mail headers for the given sequence and returns an overview of their contents. sequence will contain a sequence of message indices or UIDs, if flags contains FT_UID. The returned value is an array of objects describing one message header each:

•
 subject - the messages subject

•
 from - who sent it

•
 date - when was it sent

•
 message_id - Message-ID

•
 references - is a reference to this message id

•
 size - size in bytes

•
 uid - UID the message has in the mailbox

•
 msgno - message sequence number in the maibox

•
 recent - this message is flagged as recent

•
 flagged - this message is flagged

•
 answered - this message is flagged as answered

•
 deleted - this message is flagged for deletion

•
 seen - this message is flagged as already read

•
 draft - this message is flagged as being a draft

Example 1. imap_fetch_overview() example

$mbox = imap_open("{your.imap.host:143}","username","password")

 || die("can't connect: ".imap_last_error());

$overview = imap_fetch_overview($mbox,"2,4:6",0);

if(is_array($overview)) {

 reset($overview);

 while(list($key,$val) = each($overview)) {

 print $val->msgno

 . " - " . $val->date

 . " - " . $val->subject

 . "\n";

 }

}

imap_close($mbox);

imap_mime_header_decode (PHP3 CVS only, PHP4 >= 4.0RC1)

Decode MIME header elements

array imap_header_decode (string text)

 imap_mime_header_decode() function decodes MIME message header extensions that are non ASCII text (see RFC2047 (http://www.faqs.org/rfcs/rfc2047.html)) The decoded elements are returned in an array of objects, where each object has two properties, "charset" & "text". If the element hasn't been encoded, and in other words is in plain US-ASCII,the "charset" property of that element is set to "default".

Example 1. imap_mime_header_decode() example

$text="=?ISO-8859-1?Q?Keld_J=F8rn_Simonsen?= <keld@dkuug.dk>";

$elements=imap_mime_header_decode($text);

for($i=0;$i<count($elements);$i++) {

 echo "Charset: {$elements[$i]->charset}\n";

 echo "Text: {$elements[$i]->text}\n\n";

}

 In the above example we would have two elements, whereas the first element had previously been encoded with ISO-8859-1, and the second element would be plain US-ASCII.

imap_mail_compose (PHP3 >= 3.0.5, PHP4)

 Create a MIME message based on given envelope and body sections

string imap_mail_compose (array envelope, array body)

Example 1. imap_mail_compose() example

<?php

$envelope["from"]="musone@afterfive.com";

$envelope["to"]="musone@darkstar";

$envelope["cc"]="musone@edgeglobal.com";

$part1["type"]=TYPEMULTIPART;

$part1["subtype"]="mixed";

$filename="/tmp/imap.c.gz";

$fp=fopen($filename,"r");

$contents=fread($fp,filesize($filename));

fclose($fp);

$part2["type"]=TYPEAPPLICATION;

$part2["encoding"]=ENCBINARY;

$part2["subtype"]="octet-stream";

$part2["description"]=basename($filename);

$part2["contents.data"]=$contents;

$part3["type"]=TYPETEXT;

$part3["subtype"]="plain";

$part3["description"]="description3";

$part3["contents.data"]="contents.data3\n\n\n\t";

$body[1]=$part1;

$body[2]=$part2;

$body[3]=$part3;

echo nl2br(imap_mail_compose($envelope,$body));

?>

imap_mail (PHP3 >= 3.0.14, PHP4 >= 4.0b4)

 Send an email message

string imap_mail (string to, string subject, string message [, string additional_headers [, string cc [, string bcc [, string rpath]]]])

 This function is currently only available in PHP3.

XXIX. Informix functions

 The Informix driver for Informix (IDS) 7.x, SE 7.x, Universal Server (IUS) 9.x and IDS 2000 is implemented in "ifx.ec" and "php3_ifx.h" in the informix extension directory. IDS 7.x support is fairly complete, with full support for BYTE and TEXT columns. IUS 9.x support is partly finished: the new data types are there, but SLOB and CLOB support is still under construction.

Configuration notes: You need a version of ESQL/C to compile the PHP Informix driver. ESQL/C versions from 7.2x on should be OK. ESQL/C is now part of the Informix Client SDK.

Make sure that the "INFORMIXDIR" variable has been set, and that $INFORMIXDIR/bin is in your PATH before you run the "configure" script.

The configure script will autodetect the libraries and include directories, if you run "configure --with_informix=yes". You can overide this detection by specifying "IFX_LIBDIR", "IFX_LIBS" and "IFX_INCDIR" in the environment. The configure script will also try to detect your Informix server version. It will set the "HAVE_IFX_IUS" conditional compilation variable if your Informix version >= 9.00.

Runtime considerations: Make sure that the Informix environment variables INFORMIXDIR and INFORMIXSERVER are available to the PHP ifx driver, and that the INFORMIX bin directory is in the PATH. Check this by running a script that contains a call to phpinfo()() before you start testing. The phpinfo()() output should list these environment variables. This is true for both CGI php and Apache mod_php. You may have to set these environment variables in your Apache startup script.

The Informix shared libraries should also be available to the loader (check LD_LINBRARY_PATH or ld.so.conf/ldconfig).

Some notes on the use of BLOBs (TEXT and BYTE columns): BLOBs are normally addressed by BLOB identifiers. Select queries return a "blob id" for every BYTE and TEXT column. You can get at the contents with "string_var = ifx_get_blob($blob_id);" if you choose to get the BLOBs in memory (with : "ifx_blobinfile(0);"). If you prefer to receive the content of BLOB columns in a file, use "ifx_blobinfile(1);", and "ifx_get_blob($blob_id);" will get you the filename. Use normal file I/O to get at the blob contents.

For insert/update queries you must create these "blob id's" yourself with "ifx_create_blob();". You then plug the blob id's into an array, and replace the blob columns with a question mark (?) in the query string. For updates/inserts, you are responsible for setting the blob contents with ifx_update_blob().

The behaviour of BLOB columns can be altered by configuration variables that also can be set at runtime :

configuration variable : ifx.textasvarchar

configuration variable : ifx.byteasvarchar

runtime functions :

ifx_textasvarchar(0) : use blob id's for select queries with TEXT columns

ifx_byteasvarchar(0) : use blob id's for select queries with BYTE columns

ifx_textasvarchar(1) : return TEXT columns as if they were VARCHAR columns, so that you don't need to use blob id's for select queries.

ifx_byteasvarchar(1) : return BYTE columns as if they were VARCHAR columns, so that you don't need to use blob id's for select queries.

configuration variable : ifx.blobinfile

runtime function :

ifx_blobinfile_mode(0) : return BYTE columns in memory, the blob id lets you get at the contents.

ifx_blobinfile_mode(1) : return BYTE columns in a file, the blob id lets you get at the file name.

If you set ifx_text/byteasvarchar to 1, you can use TEXT and BYTE columns in select queries just like normal (but rather long) VARCHAR fields. Since all strings are "counted" in PHP, this remains "binary safe". It is up to you to handle this correctly. The returned data can contain anything, you are responsible for the contents.

If you set ifx_blobinfile to 1, use the file name returned by ifx_get_blob(..) to get at the blob contents. Note that in this case YOU ARE RESPONSIBLE FOR DELETING THE TEMPORARY FILES CREATED BY INFORMIX when fetching the row. Every new row fetched will create new temporary files for every BYTE column.

The location of the temporary files can be influenced by the environment variable "blobdir", default is "." (the current directory). Something like : putenv(blobdir=tmpblob"); will ease the cleaning up of temp files accidentally left behind (their names all start with "blb").

Automatically trimming "char" (SQLCHAR and SQLNCHAR) data: This can be set with the configuration variable

ifx.charasvarchar : if set to 1 trailing spaces will be automatically trimmed, to save you some "chopping".

NULL values: The configuration variable ifx.nullformat (and the runtime function ifx_nullformat()) when set to true will return NULL columns as the string "NULL", when set to false they return the empty string. This allows you to discriminate between NULL columns and empty columns.

ifx_connect (PHP3 >= 3.0.3, PHP4)

Open Informix server connection

int ifx_connect ([string database [, string userid [, string password]]])

 Returns a connection identifier on success, or FALSE on error.

 ifx_connect() establishes a connection to an Informix server. All of the arguments are optional, and if they're missing, defaults are taken from values supplied in configuration file (ifx.default_host for the host (Informix libraries will use INFORMIXSERVER environment value if not defined), ifx.default_user for user, ifx.default_password for the password (none if not defined).

 In case a second call is made to ifx_connect() with the same arguments, no new link will be established, but instead, the link identifier of the already opened link will be returned.

 The link to the server will be closed as soon as the execution of the script ends, unless it's closed earlier by explicitly calling ifx_close().

 See also ifx_pconnect(), and ifx_close().

Example 1. Connect to a Informix database

$conn_id = ifx_pconnect ("mydb@ol_srv1", "imyself", "mypassword");

ifx_pconnect (PHP3 >= 3.0.3, PHP4)

Open persistent Informix connection

int ifx_pconnect ([string database [, string userid [, string password]]])

 Returns: A positive Informix persistent link identifier on success, or false on error

 ifx_pconnect() acts very much like ifx_connect() with two major differences.

 This function behaves exactly like ifx_connect() when PHP is not running as an Apache module. First, when connecting, the function would first try to find a (persistent) link that's already open with the same host, username and password. If one is found, an identifier for it will be returned instead of opening a new connection.

 Second, the connection to the SQL server will not be closed when the execution of the script ends. Instead, the link will remain open for future use (ifx_close() will not close links established by ifx_pconnect()).

 This type of links is therefore called 'persistent'.

 See also: ifx_connect().

ifx_close (PHP3 >= 3.0.3, PHP4)

Close Informix connection

int ifx_close ([int link_identifier])

 Returns: always true.

 ifx_close() closes the link to an Informix database that's associated with the specified link identifier. If the link identifier isn't specified, the last opened link is assumed.

 Note that this isn't usually necessary, as non-persistent open links are automatically closed at the end of the script's execution.

 ifx_close() will not close persistent links generated by ifx_pconnect().

 See also: ifx_connect(), and ifx_pconnect().

Example 1. Closing a Informix connection

$conn_id = ifx_connect ("mydb@ol_srv", "itsme", "mypassword");

... some queries and stuff ...

ifx_close($conn_id);

ifx_query (PHP3 >= 3.0.3, PHP4)

Send Informix query

int ifx_query (string query [, int link_identifier [, int cursor_type [, mixed blobidarray]]])

 Returns: A positive Informix result identifier on success, or false on error.

 A "result_id" resource used by other functions to retrieve the query results. Sets "affected_rows" for retrieval by the ifx_affected_rows() function.

 ifx_query() sends a query to the currently active database on the server that's associated with the specified link identifier. If the link identifier isn't specified, the last opened link is assumed. If no link is open, the function tries to establish a link as if ifx_connect() was called, and use it.

 Executes query on connection conn_id. For "select-type" queries a cursor is declared and opened. The optional cursor_type parameter allows you to make this a "scroll" and/or "hold" cursor. It's a bitmask and can be either IFX_SCROLL, IFX_HOLD, or both or'ed together. Non-select queries are "execute immediate". IFX_SCROLL and IFX_HOLD are symbolic constants and as such shouldn't be between quotes. I you omit this parameter the cursor is a normal sequential cursor.

 For either query type the number of (estimated or real) affected rows is saved for retrieval by ifx_affected_rows().

 If you have BLOB (BYTE or TEXT) columns in an update query, you can add a blobidarray parameter containing the corresponding "blob ids", and you should replace those columns with a "?" in the query text.

 If the contents of the TEXT (or BYTE) column allow it, you can also use "ifx_textasvarchar(1)" and "ifx_byteasvarchar(1)". This allows you to treat TEXT (or BYTE) columns just as if they were ordinary (but long) VARCHAR columns for select queries, and you don't need to bother with blob id's.

 With ifx_textasvarchar(0) or ifx_byteasvarchar(0) (the default situation), select queries will return BLOB columns as blob id's (integer value). You can get the value of the blob as a string or file with the blob functions (see below).

 See also: ifx_connect().

Example 1. Show all rows of the "orders" table as a html table

ifx_textasvarchar(1); // use "text mode" for blobs

$res_id = ifx_query("select * from orders", $conn_id);

if (! $res_id) {

 printf("Can't select orders : %s\n
%s
\n", ifx_error());

 ifx_errormsg();

 die;

}

ifx_htmltbl_result($res_id, "border=\"1\"");

ifx_free_result($res_id);

Example 2. Insert some values into the "catalog" table

 // create blob id's for a byte and text column

$textid = ifx_create_blob(0, 0, "Text column in memory");

$byteid = ifx_create_blob(1, 0, "Byte column in memory");

 // store blob id's in a blobid array

$blobidarray[] = $textid;

$blobidarray[] = $byteid;

 // launch query

$query = "insert into catalog (stock_num, manu_code, " .

 "cat_descr,cat_picture) values(1,'HRO',?,?)";

$res_id = ifx_query($query, $conn_id, $blobidarray);

if (! $res_id) {

 ... error ...

}

 // free result id

ifx_free_result($res_id);

ifx_prepare (PHP3 >= 3.0.4, PHP4)

Prepare an SQL-statement for execution

int ifx_prepare (string query, int conn_id [, int cursor_def, mixed blobidarray])

 Returns a integer result_id for use by ifx_do(). Sets affected_rows for retrieval by the ifx_affected_rows() function.

 Prepares query on connection conn_id. For "select-type" queries a cursor is declared and opened. The optional cursor_type parameter allows you to make this a "scroll" and/or "hold" cursor. It's a bitmask and can be either IFX_SCROLL, IFX_HOLD, or both or'ed together.

 For either query type the estimated number of affected rows is saved for retrieval by ifx_affected_rows().

 If you have BLOB (BYTE or TEXT) columns in the query, you can add a blobidarray parameter containing the corresponding "blob ids", and you should replace those columns with a "?" in the query text.

 If the contents of the TEXT (or BYTE) column allow it, you can also use "ifx_textasvarchar(1)" and "ifx_byteasvarchar(1)". This allows you to treat TEXT (or BYTE) columns just as if they were ordinary (but long) VARCHAR columns for select queries, and you don't need to bother with blob id's.

 With ifx_textasvarchar(0) or ifx_byteasvarchar(0) (the default situation), select queries will return BLOB columns as blob id's (integer value). You can get the value of the blob as a string or file with the blob functions (see below).

 See also: ifx_do().

ifx_do (PHP3 >= 3.0.4, PHP4)

 Execute a previously prepared SQL-statement

int ifx_do (int result_id)

 Returns TRUE on success, FALSE on error.

 Executes a previously prepared query or opens a cursor for it.

 Does NOT free result_id on error.

 Also sets the real number of ifx_affected_rows() for non-select statements for retrieval by ifx_affected_rows()

 See also: ifx_prepare(). There is a example.

ifx_error (PHP3 >= 3.0.3, PHP4)

Returns error code of last Informix call

string ifx_error(void);

 The Informix error codes (SQLSTATE & SQLCODE) formatted as follows :

 x [SQLSTATE = aa bbb SQLCODE=cccc]

 where x = space : no error

 E : error

 N : no more data

 W : warning

 ? : undefined

 If the "x" character is anything other than space, SQLSTATE and SQLCODE describe the error in more detail.

 See the Informix manual for the description of SQLSTATE and SQLCODE

 Returns in a string one character describing the general results of a statement and both SQLSTATE and SQLCODE associated with the most recent SQL statement executed. The format of the string is "(char) [SQLSTATE=(two digits) (three digits) SQLCODE=(one digit)]". The first character can be ' ' (space) (success), 'W' (the statement caused some warning), 'E' (an error happened when executing the statement) or 'N' (the statement didn't return any data).

 See also: ifx_errormsg()

ifx_errormsg (PHP3 >= 3.0.4, PHP4)

Returns error message of last Informix call

string ifx_errormsg ([int errorcode])

 Returns the Informix error message associated with the most recent Informix error, or, when the optional "errorcode" param is present, the error message corresponding to "errorcode".

 See also: ifx_error()

printf("%s\n
", ifx_errormsg(-201));

ifx_affected_rows (PHP3 >= 3.0.3, PHP4)

Get number of rows affected by a query

int ifx_affected_rows (int result_id)

 result_id is a valid result id returned by ifx_query() or ifx_prepare().

 Returns the number of rows affected by a query associated with result_id.

 For inserts, updates and deletes the number is the real number (sqlerrd[2]) of affected rows. For selects it is an estimate (sqlerrd[0]). Don't rely on it. The database server can never return the actual number of rows that will be returned by a SELECT because it has not even begun fetching them at this stage (just after the "PREPARE" when the optimizer has determined the query plan).

 Useful after ifx_prepare() to limit queries to reasonable result sets.

 See also: ifx_num_rows()

Example 1. Informix affected rows

$rid = ifx_prepare ("select * from emp

 where name like " . $name, $connid);

if (! $rid) {

 ... error ...

}

$rowcount = ifx_affected_rows ($rid);

if ($rowcount > 1000) {

 printf ("Too many rows in result set (%d)\n
", $rowcount);

 die ("Please restrict your query
\n");

}

ifx_getsqlca (PHP3 >= 3.0.8, PHP4)

 Get the contents of sqlca.sqlerrd[0..5] after a query

array ifx_getsqlca (int result_id)

 result_id is a valid result id returned by ifx_query() or ifx_prepare().

 Returns a pseudo-row (assiociative array) with sqlca.sqlerrd[0] ... sqlca.sqlerrd[5] after the query associated with result_id.

 For inserts, updates and deletes the values returned are those as set by the server after executing the query. This gives access to the number of affected rows and the serial insert value. For SELECTs the values are those saved after the PREPARE statement. This gives access to the *estimated* number of affected rows. The use of this function saves the overhead of executing a "select dbinfo('sqlca.sqlerrdx')" query, as it retrieves the values that were saved by the ifx driver at the appropriate moment.

Example 1. Retrieve Informix sqlca.sqlerrd[x] values

/* assume the first column of 'sometable' is a serial */

$qid = ifx_query("insert into sometable

 values (0, '2nd column', 'another column' ", $connid);

if (! $qid) {

 ... error ...

}

$sqlca = ifx_getsqlca ($qid);

$serial_value = $sqlca["sqlerrd1"];

echo "The serial value of the inserted row is : " . $serial_value
\n";

ifx_fetch_row (PHP3 >= 3.0.3, PHP4)

Get row as enumerated array

array ifx_fetch_row (int result_id [, mixed position])

 Returns an associative array that corresponds to the fetched row, or false if there are no more rows.

 Blob columns are returned as integer blob id values for use in ifx_get_blob() unless you have used ifx_textasvarchar(1) or ifx_byteasvarchar(1), in which case blobs are returned as string values. Returns FALSE on error

 result_id is a valid resultid returned by ifx_query() or ifx_prepare() (select type queries only!).

 position is an optional parameter for a "fetch" operation on "scroll" cursors: "NEXT", "PREVIOUS", "CURRENT", "FIRST", "LAST" or a number. If you specify a number, an "absolute" row fetch is executed. This parameter is optional, and only valid for SCROLL cursors.

 ifx_fetch_row() fetches one row of data from the result associated with the specified result identifier. The row is returned as an array. Each result column is stored in an array offset, starting at offset 0, with the column name as key.

 Subsequent calls to ifx_fetch_row() would return the next row in the result set, or false if there are no more rows.

Example 1. Informix fetch rows

$rid = ifx_prepare ("select * from emp where name like " . $name,

 $connid, IFX_SCROLL);

if (! $rid) {

 ... error ...

}

$rowcount = ifx_affected_rows($rid);

if ($rowcount > 1000) {

 printf ("Too many rows in result set (%d)\n
", $rowcount);

 die ("Please restrict your query
\n");

}

if (! ifx_do ($rid)) {

 ... error ...

}

$row = ifx_fetch_row ($rid, "NEXT");

while (is_array($row)) {

 for(reset($row); $fieldname=key($row); next($row)) {

 $fieldvalue = $row[$fieldname];

 printf ("%s = %s,", $fieldname, $fieldvalue);

 }

 printf("\n
");

 $row = ifx_fetch_row ($rid, "NEXT");

}

ifx_free_result ($rid);

ifx_htmltbl_result (PHP3 >= 3.0.3, PHP4)

 Formats all rows of a query into a HTML table

int ifx_htmltbl_result (int result_id [, string html_table_options])

 Returns the number of rows fetched or FALSE on error.

 Formats all rows of the result_id query into a html table. The optional second argument is a string of <table> tag options

Example 1. Informix results as HTML table

$rid = ifx_prepare ("select * from emp where name like " . $name,

 $connid, IFX_SCROLL);

if (! $rid) {

 ... error ...

}

$rowcount = ifx_affected_rows ($rid);

if ($rowcount > 1000) {

 printf ("Too many rows in result set (%d)\n
", $rowcount);

 die ("Please restrict your query
\n");

}

if (! ifx_do($rid) {

 ... error ...

}

ifx_htmltbl_result ($rid, "border=\"2\"");

ifx_free_result($rid);

ifx_fieldtypes (PHP3 >= 3.0.3, PHP4)

List of Informix SQL fields

array ifx_fieldtypes (int result_id)

 Returns an associative array with fieldnames as key and the SQL fieldtypes as data for query with result_id. Returns FALSE on error.

Example 1. Fielnames and SQL fieldtypes

$types = ifx_fieldtypes ($resultid);

if (! isset ($types)) {

 ... error ...

}

for ($i = 0; $i < count($types); $i++) {

 $fname = key($types);

 printf("%s :\t type = %s\n", $fname, $types[$fname]);

 next($types);

}

ifx_fieldproperties (PHP3 >= 3.0.3, PHP4)

List of SQL fieldproperties

array ifx_fieldproperties (int result_id)

 Returns an associative array with fieldnames as key and the SQL fieldproperties as data for a query with result_id. Returns FALSE on error.

 Returns the Informix SQL fieldproperies of every field in the query as an associative array. Properties are encoded as: "SQLTYPE;length;precision;scale;ISNULLABLE" where SQLTYPE = the Informix type like "SQLVCHAR" etc. and ISNULLABLE = "Y" or "N".

Example 1. Informix SQL fieldproperties

$properties = ifx_fieldtypes ($resultid);

if (! isset($properties)) {

 ... error ...

}

for ($i = 0; $i < count($properties); $i++) {

 $fname = key ($properties);

 printf ("%s:\t type = %s\n", $fname, $properties[$fname]);

 next ($properties);

}

ifx_num_fields (PHP3 >= 3.0.3, PHP4)

Returns the number of columns in the query

int ifx_num_fields (int result_id)

 Returns the number of columns in query for result_id or FALSE on error

 After preparing or executing a query, this call gives you the number of columns in the query.

ifx_num_rows (PHP3 >= 3.0.3, PHP4)

Count the rows already fetched a query

int ifx_num_rows (int result_id)

 Gives the number of rows fetched so far for a query with result_id after a ifx_query() or ifx_do() query.

ifx_free_result (PHP3 >= 3.0.3, PHP4)

Releases resources for the query

int ifx_free_result (int result_id)

 Releases resources for the query associated with result_id. Returns FALSE on error.

ifx_create_char (PHP3 >= 3.0.6, PHP4)

Creates an char object

int ifx_create_char (string param)

 Creates an char object. param should be the char content.

ifx_free_char (PHP3 >= 3.0.6, PHP4)

Deletes the char object

int ifx_free_char (int bid)

 Deletes the charobject for the given char object-id bid. Returns FALSE on error otherwise TRUE.

ifx_update_char (PHP3 >= 3.0.6, PHP4)

Updates the content of the char object

int ifx_update_char (int bid, string content)

 Updates the content of the char object for the given char object bid. content is a string with new data. Returns FALSE on error otherwise TRUE.

ifx_get_char (PHP3 >= 3.0.6, PHP4)

Return the content of the char object

int ifx_get_char (int bid)

 Returns the content of the char object for the given char object-id bid.

ifx_create_blob (PHP3 >= 3.0.4, PHP4)

Creates an blob object

int ifx_create_blob (int type, int mode, string param)

 Creates an blob object.

 type: 1 = TEXT, 0 = BYTE

 mode: 0 = blob-object holds the content in memory, 1 = blob-object holds the content in file.

 param: if mode = 0: pointer to the content, if mode = 1: pointer to the filestring.

 Return FALSE on error, otherwise the new blob object-id.

ifx_copy_blob (PHP3 >= 3.0.4, PHP4)

Duplicates the given blob object

int ifx_copy_blob (int bid)

 Duplicates the given blob object. bid is the ID of the blob object.

 Returns FALSE on error otherwise the new blob object-id.

ifx_free_blob (PHP3 >= 3.0.4, PHP4)

Deletes the blob object

int ifx_free_blob (int bid)

 Deletes the blobobject for the given blob object-id bid. Returns FALSE on error otherwise TRUE.

ifx_get_blob (PHP3 >= 3.0.4, PHP4)

Return the content of a blob object

int ifx_get_blob (int bid)

 Returns the content of the blob object for the given blob object-id bid.

ifx_update_blob (PHP3 >= 3.0.4, PHP4)

Updates the content of the blob object

ifx_update_blob (int bid, string content)

 Updates the content of the blob object for the given blob object bid. content is a string with new data. Returns FALSE on error otherwise TRUE.

ifx_blobinfile_mode (PHP3 >= 3.0.4, PHP4)

Set the default blob mode for all select queries

void ifx_blobinfile_mode (int mode)

 Set the default blob mode for all select queries. Mode "0" means save Byte-Blobs in memory, and mode "1" means save Byte-Blobs in a file.

ifx_textasvarchar (PHP3 >= 3.0.4, PHP4)

Set the default text mode

void ifx_textasvarchar (int mode)

 Sets the default text mode for all select-queries. Mode "0" will return a blob id, and mode "1" will return a varchar with text content.

ifx_byteasvarchar (PHP3 >= 3.0.4, PHP4)

Set the default byte mode

void ifx_byteasvarchar (int mode)

 Sets the default byte mode for all select-queries. Mode "0" will return a blob id, and mode "1" will return a varchar with text content.

ifx_nullformat (PHP3 >= 3.0.4, PHP4)

 Sets the default return value on a fetch row

void ifx_nullformat (int mode)

 Sets the default return value of a NULL-value on a fetch row. Mode "0" returns "", and mode "1" returns "NULL".

ifxus_create_slob (PHP3 >= 3.0.4, PHP4)

Creates an slob object and opens it

int ifxus_create_slob (int mode)

 Creates an slob object and opens it. Modes: 1 = LO_RDONLY, 2 = LO_WRONLY, 4 = LO_APPEND, 8 = LO_RDWR, 16 = LO_BUFFER, 32 = LO_NOBUFFER -> or-mask. You can also use constants named IFX_LO_RDONLY, IFX_LO_WRONLY etc. Return FALSE on error otherwise the new slob object-id.

ifx_free_slob (unknown)

Deletes the slob object

int ifxus_free_slob (int bid)

 Deletes the slob object. bid is the Id of the slob object. Returns FALSE on error otherwise TRUE.

ifxus_close_slob (PHP3 >= 3.0.4, PHP4)

Deletes the slob object

int ifxus_close_slob (int bid)

 Deletes the slob object on the given slob object-id bid. Return FALSE on error otherwise TRUE.

ifxus_open_slob (PHP3 >= 3.0.4, PHP4)

Opens an slob object

int ifxus_open_slob (long bid, int mode)

 Opens an slob object. bid should be an existing slob id. Modes: 1 = LO_RDONLY, 2 = LO_WRONLY, 4 = LO_APPEND, 8 = LO_RDWR, 16 = LO_BUFFER, 32 = LO_NOBUFFER -> or-mask. Returns FALSE on error otherwise the new slob object-id.

ifxus_tell_slob (PHP3 >= 3.0.4, PHP4)

Returns the current file or seek position

int ifxus_tell_slob (long bid)

 Returns the current file or seek position of an open slob object bid should be an existing slob id. Return FALSE on error otherwise the seek position.

ifxus_seek_slob (PHP3 >= 3.0.4, PHP4)

Sets the current file or seek position

int ifxus_seek_blob (long bid, int mode, long offset)

 Sets the current file or seek position of an open slob object. bid should be an existing slob id. Modes: 0 = LO_SEEK_SET, 1 = LO_SEEK_CUR, 2 = LO_SEEK_END and offset is an byte offset. Return FALSE on error otherwise the seek position.

ifxus_read_slob (PHP3 >= 3.0.4, PHP4)

Reads nbytes of the slob object

int ifxus_read_slob (long bid, long nbytes)

 Reads nbytes of the slob object. bid is a existing slob id and nbytes is the number of bytes zu read. Return FALSE on error otherwise the string.

ifxus_write_slob (PHP3 >= 3.0.4, PHP4)

Writes a string into the slob object

int ifxus_write_slob (long bid, string content)

 Writes a string into the slob object. bid is a existing slob id and content the content to write. Return FALSE on error otherwise bytes written.

XXX. InterBase functions

 InterBase is a popular database put out by Borland/Inprise. More information about InterBase is available at http://www.interbase.com/. Oh, by the way, InterBase just joined the open source movement!

Note: Full support for InterBase 6 was added in PHP 4.0.

ibase_connect (PHP3 >= 3.0.6, PHP4)

 Open a connection to an InterBase database

int ibase_connect (string database [, string username [, string password [, string charset [, int buffers [, int dialect [, string role]]]]]])

 Establishes a connection to an InterBase server. The database argument has to be a valid path to database file on the server it resides on. If the server is not local, it must be prefixed with either 'hostname:' (TCP/IP), '//hostname/' (NetBEUI) or 'hostname@' (IPX/SPX), depending on the connection protocol used. username and password can also be specified with PHP configuration directives ibase.default_user and ibase.default_password. charset is the default character set for a database. buffers is the number of database buffers to allocate for the server-side cache. If 0 or omitted, server chooses its own default. dialect selects the default SQL dialect for any statement executed within a connection, and it defaults to the highest one supported by client libraries.

 In case a second call is made to ibase_connect() with the same arguments, no new link will be established, but instead, the link identifier of the already opened link will be returned. The link to the server will be closed as soon as the execution of the script ends, unless it's closed earlier by explicitly calling ibase_close().

Example 1. Ibase_connect() example

<?php

 $dbh = ibase_connect ($host, $username, $password);

 $stmt = 'SELECT * FROM tblname';

 $sth = ibase_query ($dbh, $stmt);

 while ($row = ibase_fetch_object ($sth)) {

 print $row->email . "\n";

 }

 ibase_close ($dbh);

?>

Note: buffers was added in PHP4-RC2.

Note: dialect was added in PHP4-RC2. It is functional only with InterBase 6 and versions higher than that.

Note: role was added in PHP4-RC2. It is functional only with InterBase 5 and versions higher than that.

 See also: ibase_pconnect().

ibase_pconnect (PHP3 >= 3.0.6, PHP4)

 Creates an persistent connection to an InterBase database

int ibase_connect (string database [, string username [, string password [, string charset [, string role]]]])

 ibase_pconnect() acts very much like ibase_connect() with two major differences. First, when connecting, the function will first try to find a (persistent) link that's already opened with the same parameters. If one is found, an identifier for it will be returned instead of opening a new connection. Second, the connection to the InterBase server will not be closed when the execution of the script ends. Instead, the link will remain open for future use (ibase_close() will not close links established by ibase_pconnect()). This type of link is therefore called 'persistent'.

 See also ibase_connect() for the meaning of parameters passed to this function. They are exactly the same.

ibase_close (PHP3 >= 3.0.6, PHP4)

 Close a connection to an InterBase database

int ibase_close ([int connection_id])

 Closes the link to an InterBase database that's associated with a connection id returned from ibase_connect(). If the connection id is omitted, the last opened link is assumed. Default transaction on link is committed, other transactions are rolled back.

ibase_query (PHP3 >= 3.0.6, PHP4)

Execute a query on an InterBase database

int ibase_query ([int link_identifier, string query [, int bind_args]])

 Performs a query on an InterBase database, returning a result identifier for use with ibase_fetch_row(), ibase_fetch_object(), ibase_free_result() and ibase_free_query().

Note: Although this function supports variable binding to parameter placeholders, there is not very much meaning using this capability with it. For real life use and an example, see ibase_prepare() and ibase_execute().

ibase_fetch_row (PHP3 >= 3.0.6, PHP4)

Fetch a row from an InterBase database

array ibase_fetch_row (int result_identifier)

 Returns the next row specified by the result identifier obtained using the ibase_query().

ibase_fetch_object (PHP3 >= 3.0.7, PHP4 >= 4.0RC1)

Get an object from a InterBase database

object ibase_fetch_object (int result_id)

 Fetches a row as a pseudo-object from a result_id obtained either by ibase_query() or ibase_execute().

<php

 $dbh = ibase_connect ($host, $username, $password);

 $stmt = 'SELECT * FROM tblname';

 $sth = ibase_query ($dbh, $stmt);

 while ($row = ibase_fetch_object ($sth)) {

 print $row->email . "\n";

 }

 ibase_close ($dbh);

?>

 See also ibase_fetch_row().

ibase_free_result (PHP3 >= 3.0.6, PHP4)

Free a result set

int ibase_free_result (int result_identifier)

 Free's a result set the has been created by ibase_query().

ibase_prepare (PHP3 >= 3.0.6, PHP4)

 Prepare a query for later binding of parameter placeholders and execution

int ibase_prepare ([int link_identifier, string query])

 Prepare a query for later binding of parameter placeholders and execution (via ibase_execute()).

ibase_execute (PHP3 >= 3.0.6, PHP4)

Execute a previously prepared query

int ibase_execute (int query [, int bind_args])

 Execute a query prepared by ibase_prepare(). This is a lot more effective than using ibase_query() if you are repeating a same kind of query several times with only some parameters changing.

<?php

 $updates = array(

 1 => 'Eric',

 5 => 'Filip',

 7 => 'Larry'

);

 $query = ibase_prepare("UPDATE FOO SET BAR = ? WHERE BAZ = ?");

 while (list($baz, $bar) = each($updates)) {

 ibase_execute($query, $bar, $baz);

 }

?>

ibase_free_query (PHP3 >= 3.0.6, PHP4)

 Free memory allocated by a prepared query

int ibase_free_query (int query)

 Free a query prepared by ibase_prepare().

ibase_timefmt (PHP3 >= 3.0.6, PHP4)

 Sets the format of timestamp, date and time type columns returned from queries

int ibase_timefmt (string format [, int columntype])

 Sets the format of timestamp, date or time type columns returned from queries. Internally, the columns are formatted by c-function strftime(), so refer to it's documentation regarding to the format of the string. columntype is one of the constants IBASE_TIMESTAMP, IBASE_DATE and IBASE_TIME. If omitted, defaults to IBASE_TIMESTAMP for backwards compatibility.

<?php

 // InterBase 6 TIME-type columns will be returned in

 // the form '05 hours 37 minutes'.

 ibase_timefmt("%H hours %M minutes", IBASE_TIME);

?>

 You can also set defaults for these formats with PHP configuration directives ibase.timestampformat, ibase.dateformat and ibase.timeformat.

Note: columntype was added in PHP 4.0. It has any meaning only with InterBase version 6 and higher.

Note: A backwards incompatible change happened in PHP 4.0 when PHP configuration directive ibase.timeformat was renamed to ibase.timestampformat and directives ibase.dateformat and ibase.timeformat were added, so that the names would match better their functionality.

ibase_num_fields (PHP3 >= 3.0.7, PHP4 >= 4.0RC1)

 Get the number of fields in a result set

int ibase_num_fields (int result_id)

 Returns an integer containing the number of fields in a result set.

<?php

 $dbh = ibase_connect ($host, $username, $password);

 $stmt = 'SELECT * FROM tblname';

 $sth = ibase_query ($dbh, $stmt);

 if (ibase_num_fields($sth) > 0) {

 while ($row = ibase_fetch_object ($sth)) {

 print $row->email . "\n";

 }

 } else {

 die ("No Results were found for your query");

 }

 ibase_close ($dbh);

?>

 See also: ibase_field_info().

Note: Ibase_num_fields() is currently not functional in PHP4.

XXXI. LDAP functions

Introduction to LDAP

 LDAP is the Lightweight Directory Access Protocol, and is a protocol used to access "Directory Servers". The Directory is a special kind of database that holds information in a tree structure.

 The concept is similar to your hard disk directory structure, except that in this context, the root directory is "The world" and the first level subdirectories are "countries". Lower levels of the directory structure contain entries for companies, organisations or places, while yet lower still we find directory entries for people, and perhaps equipment or documents.

 To refer to a file in a subdirectory on your hard disk, you might use something like

 /usr/local/myapp/docs

 The forwards slash marks each division in the reference, and the sequence is read from left to right.

 The equivalent to the fully qualified file reference in LDAP is the "distinguished name", referred to simply as "dn". An example dn might be.

 cn=John Smith,ou=Accounts,o=My Company,c=US

 The comma marks each division in the reference, and the sequence is read from right to left. You would read this dn as ..

 country = US

 organization = My Company

 organizationalUnit = Accounts

 commonName = John Smith

 In the same way as there are no hard rules about how you organise the directory structure of a hard disk, a directory server manager can set up any structure that is meaningful for the purpose. However, there are some conventions that are used. The message is that you can not write code to access a directory server unless you know something about its structure, any more than you can use a database without some knowledge of what is available.

Complete code example

 Retrieve information for all entries where the surname starts with "S" from a directory server, displaying an extract with name and email address.

Example 1. LDAP search example

<?php

// basic sequence with LDAP is connect, bind, search, interpret search

// result, close connection

echo "<h3>LDAP query test</h3>";

echo "Connecting ...";

$ds=ldap_connect("localhost"); // must be a valid LDAP server!

echo "connect result is ".$ds."<p>";

if ($ds) {

 echo "Binding ...";

 $r=ldap_bind($ds); // this is an "anonymous" bind, typically

 // read-only access

 echo "Bind result is ".$r."<p>";

 echo "Searching for (sn=S*) ...";

 // Search surname entry

 $sr=ldap_search($ds,"o=My Company, c=US", "sn=S*");

 echo "Search result is ".$sr."<p>";

 echo "Number of entires returned is ".ldap_count_entries($ds,$sr)."<p>";

 echo "Getting entries ...<p>";

 $info = ldap_get_entries($ds, $sr);

 echo "Data for ".$info["count"]." items returned:<p>";

 for ($i=0; $i<$info["count"]; $i++) {

 echo "dn is: ". $info[$i]["dn"] ."
";

 echo "first cn entry is: ". $info[$i]["cn"][0] ."
";

 echo "first email entry is: ". $info[$i]["mail"][0] ."<p>";

 }

 echo "Closing connection";

 ldap_close($ds);

} else {

 echo "<h4>Unable to connect to LDAP server</h4>";

}

?>

Using the PHP LDAP calls

 You will need to get and compile LDAP client libraries from either the University of Michigan ldap-3.3 package or the Netscape Directory SDK 3.0. You will also need to recompile PHP with LDAP support enabled before PHP's LDAP calls will work.

 Before you can use the LDAP calls you will need to know ..

•
 The name or address of the directory server you will use

•
 The "base dn" of the server (the part of the world directory that is held on this server, which could be "o=My Company,c=US")

•
 Whether you need a password to access the server (many servers will provide read access for an "anonymous bind" but require a password for anything else)

 The typical sequence of LDAP calls you will make in an application will follow this pattern:

 ldap_connect() // establish connection to server

 |

 ldap_bind() // anonymous or authenticated "login"

 |

 do something like search or update the directory

 and display the results

 |

 ldap_close() // "logout"

More Information

 Lots of information about LDAP can be found at

•
 Netscape (http://developer.netscape.com/tech/directory/)

•
 University of Michigan (http://www.umich.edu/~dirsvcs/ldap/index.html)

•
 OpenLDAP Project (http://www.openldap.org/)

•
 LDAP World (http://elvira.innosoft.com/ldapworld)

 The Netscape SDK contains a helpful Programmer's Guide in .html format.

ldap_add (PHP3 , PHP4)

Add entries to LDAP directory

int ldap_add (int link_identifier, string dn, array entry)

 returns true on success and false on error.

 The ldap_add() function is used to add entries in the LDAP directory. The DN of the entry to be added is specified by dn. Array entry specifies the information about the entry. The values in the entries are indexed by individual attributes. In case of multiple values for an attribute, they are indexed using integers starting with 0.

 entry["attribute1"] = value

 entry["attribute2"][0] = value1

 entry["attribute2"][1] = value2

Example 1. Complete example with authenticated bind

<?php

$ds=ldap_connect("localhost"); // assuming the LDAP server is on this host

if ($ds) {

 // bind with appropriate dn to give update access

 $r=ldap_bind($ds,"cn=root, o=My Company, c=US", "secret");

 // prepare data

 $info["cn"]="John Jones";

 $info["sn"]="Jones";

 $info["mail"]="jonj@here.and.now";

 $info["objectclass"]="person";

 // add data to directory

 $r=ldap_add($ds, "cn=John Jones, o=My Company, c=US", $info);

 ldap_close($ds);

} else {

 echo "Unable to connect to LDAP server";

}

?>

ldap_bind (PHP3 , PHP4)

Bind to LDAP directory

int ldap_bind (int link_identifier [, string bind_rdn [, string bind_password]])

 Binds to the LDAP directory with specified RDN and password. Returns true on success and false on error.

 ldap_bind() does a bind operation on the directory. bind_rdn and bind_password are optional. If not specified, anonymous bind is attempted.

ldap_close (PHP3 , PHP4)

Close link to LDAP server

int ldap_close (int link_identifier)

 Returns true on success, false on error.

 ldap_close() closes the link to the LDAP server that's associated with the specified link_identifier.

 This call is internally identical to ldap_unbind(). The LDAP API uses the call ldap_unbind(), so perhaps you should use this in preference to ldap_close().

ldap_compare (PHP4 CVS only)

Compare value of attribute found in entry specified with DN

int ldap_compare (int link_identifier, string dn, string attribute, string value)

 Returns true if value matches otherwise returns false. Returns -1 on error.

 ldap_compare() is used to compare value of attribute to value of same attribute in LDAP directory entry specified with dn.

 The following example demonstrates how to check whether or not given password matches the one defined in DN specified entry.

Example 1. Complete example of password check

<?php

$ds=ldap_connect("localhost"); // assuming the LDAP server is on this host

if ($ds) {

 // bind

 if(ldap_bind($ds)) {

 // prepare data

 $dn = "cn=Matti Meikku, ou=My Unit, o=My Company, c=FI";

 $value = "secretpassword";

 $attr = "password";

 // compare value

 $r=ldap_compare($ds, $dn, $attr, $value);

 if ($r === -1) {

 echo "Error: ".ldap_error($ds);

 } elseif ($r === TRUE) {

 echo "Password correct.";

 } elseif ($r === FALSE) {

 echo "Wrong guess! Password incorrect.";

 }

 } else {

 echo "Unable to bind to LDAP server.";

 }

 ldap_close($ds);

} else {

 echo "Unable to connect to LDAP server.";

}

?>

Note: ldap_compare() can NOT be used to compare BINARY values!

Note: This function was added in 4.0.2.

ldap_connect (PHP3 , PHP4)

Connect to an LDAP server

int ldap_connect ([string hostname [, int port]])

 Returns a positive LDAP link identifier on success, or false on error.

 ldap_connect() establishes a connection to a LDAP server on a specified hostname and port. Both the arguments are optional. If no arguments are specified then the link identifier of the already opened link will be returned. If only hostname is specified, then the port defaults to 389.

ldap_count_entries (PHP3 , PHP4)

Count the number of entries in a search

int ldap_count_entries (int link_identifier, int result_identifier)

 Returns number of entries in the result or false on error.

 ldap_count_entries() returns the number of entries stored in the result of previous search operations. result_identifier identifies the internal ldap result.

ldap_delete (PHP3 , PHP4)

Delete an entry from a directory

int ldap_delete (int link_identifier, string dn)

 Returns true on success and false on error.

 ldap_delete() function delete a particular entry in LDAP directory specified by dn.

ldap_dn2ufn (PHP3 , PHP4)

Convert DN to User Friendly Naming format

string ldap_dn2ufn (string dn)

 ldap_dn2ufn() function is used to turn a DN into a more user-friendly form, stripping off type names.

ldap_err2str (PHP3 >= 3.0.13, PHP4 >= 4.0RC2)

 Convert LDAP error number into string error message

string ldap_err2str (int errno)

 returns string error message.

 This function returns the string error message explaining the error number errno. While LDAP errno numbers are standardized, different libraries return different or even localized textual error messages. Never check for a specific error message text, but always use an error number to check.

 See also ldap_errno() and ldap_error().

Example 1. Enumerating all LDAP error messages

<?php

 for($i=0; $i<100; $i++) {

 printf("Error $i: %s
\n", ldap_str2err($i));

 }

?>

ldap_errno (PHP3 >= 3.0.12, PHP4 >= 4.0RC2)

 Return the LDAP error number of the last LDAP command

int ldap_errno (int link_id)

 return the LDAP error number of the last LDAP command for this link.

 This function returns the standardized error number returned by the last LDAP command for the given link identifier. This number can be converted into a textual error message using ldap_err2str().

 Unless you lower your warning level in your php3.ini sufficiently or prefix your LDAP commands with @ (at) characters to suppress warning output, the errors generated will also show up in your HTML output.

Example 1. Generating and catching an error

<?php

// This example contains an error, which we will catch.

$ld = ldap_connect("localhost");

$bind = ldap_bind($ld);

// syntax error in filter expression (errno 87),

// must be "objectclass=*" to work.

$res = @ldap_search($ld, "o=Myorg, c=DE", "objectclass");

if (!$res) {

 printf("LDAP-Errno: %s
\n", ldap_errno($ld));

 printf("LDAP-Error: %s
\n", ldap_error($ld));

 die("Argh!
\n");

}

$info = ldap_get_entries($ld, $res);

printf("%d matching entries.
\n", $info["count"]);

?>

 see also ldap_err2str() and ldap_error().

ldap_error (PHP3 >= 3.0.12, PHP4 >= 4.0RC2)

 Return the LDAP error message of the last LDAP command

string ldap_error (int link_id)

 returns string error message.

 This function returns the string error message explaining the error generated by the last LDAP command for the given link identifier. While LDAP errno numbers are standardized, different libraries return different or even localized textual error messages. Never check for a specific error message text, but always use an error number to check.

 Unless you lower your warning level in your php3.ini sufficiently or prefix your LDAP commands with @ (at) characters to suppress warning output, the errors generated will also show up in your HTML output.

 see also ldap_err2str() and ldap_errno().

ldap_explode_dn (PHP3 , PHP4)

Splits DN into its component parts

array ldap_explode_dn (string dn, int with_attrib)

 ldap_explode_dn() function is used to split the a DN returned by ldap_get_dn() and breaks it up into its component parts. Each part is known as Relative Distinguished Name, or RDN. ldap_explode_dn() returns an array of all those components. with_attrib is used to request if the RDNs are returned with only values or their attributes as well. To get RDNs with the attributes (i.e. in attribute=value format) set with_attrib to 0 and to get only values set it to 1.

ldap_first_attribute (PHP3 , PHP4)

Return first attribute

string ldap_first_attribute (int link_identifier, int result_entry_identifier, int ber_identifier)

 Returns the first attribute in the entry on success and false on error.

 Similar to reading entries, attributes are also read one by one from a particular entry. ldap_first_attribute() returns the first attribute in the entry pointed by the entry identifier. Remaining attributes are retrieved by calling ldap_next_attribute() successively. ber_identifier is the identifier to internal memory location pointer. It is passed by reference. The same ber_identifier is passed to the ldap_next_attribute() function, which modifies that pointer.

 see also ldap_get_attributes()

ldap_first_entry (PHP3 , PHP4)

Return first result id

int ldap_first_entry (int link_identifier, int result_identifier)

 Returns the result entry identifier for the first entry on success and false on error.

 Entries in the LDAP result are read sequentially using the ldap_first_entry() and ldap_next_entry() functions. ldap_first_entry() returns the entry identifier for first entry in the result. This entry identifier is then supplied to lap_next_entry() routine to get successive entries from the result.

 see also ldap_get_entries().

ldap_free_result (PHP3 , PHP4)

Free result memory

int ldap_free_result (int result_identifier)

 Returns true on success and false on error.

 ldap_free_result() frees up the memory allocated internally to store the result and pointed by the result_identifier. All result memory will be automatically freed when the script terminates.

 Typically all the memory allocated for the ldap result gets freed at the end of the script. In case the script is making successive searches which return large result sets, ldap_free_result() could be called to keep the runtime memory usage by the script low.

ldap_get_attributes (PHP3 , PHP4)

Get attributes from a search result entry

array ldap_get_attributes (int link_identifier, int result_entry_identifier)

 Returns a complete entry information in a multi-dimensional array on success and false on error.

 ldap_get_attributes() function is used to simplify reading the attributes and values from an entry in the search result. The return value is a multi-dimensional array of attributes and values.

 Having located a specific entry in the directory, you can find out what information is held for that entry by using this call. You would use this call for an application which "browses" directory entries and/or where you do not know the structure of the directory entries. In many applications you will be searching for a specific attribute such as an email address or a surname, and won't care what other data is held.

return_value["count"] = number of attributes in the entry

return_value[0] = first attribute

return_value[n] = nth attribute

return_value["attribute"]["count"] = number of values for attribute

return_value["attribute"][0] = first value of the attribute

return_value["attribute"][i] = ith value of the attribute

Example 1. Show the list of attributes held for a particular directory entry

// $ds is the link identifier for the directory

// $sr is a valid search result from a prior call to

// one of the ldap directory search calls

$entry = ldap_first_entry($ds, $sr);

$attrs = ldap_get_attributes($ds, $entry);

echo $attrs["count"]." attributes held for this entry:<p>";

for ($i=0; $i<$attrs["count"]; $i++)

 echo $attrs[$i]."
";

 see also ldap_first_attribute() and ldap_next_attribute()

ldap_get_dn (PHP3 , PHP4)

Get the DN of a result entry

string ldap_get_dn (int link_identifier, int result_entry_identifier)

 Returns the DN of the result entry and false on error.

 ldap_get_dn() function is used to find out the DN of an entry in the result.

ldap_get_entries (PHP3 , PHP4)

Get all result entries

array ldap_get_entries (int link_identifier, int result_identifier)

 Returns a complete result information in a multi-dimenasional array on success and false on error.

 ldap_get_entries() function is used to simplify reading multiple entries from the result and then reading the attributes and multiple values. The entire information is returned by one function call in a multi-dimensional array. The structure of the array is as follows.

 The attribute index is converted to lowercase. (Attributes are case-insensitive for directory servers, but not when used as array indices)

return_value["count"] = number of entries in the result

return_value[0] : refers to the details of first entry

return_value[i]["dn"] = DN of the ith entry in the result

return_value[i]["count"] = number of attributes in ith entry

return_value[i][j] = jth attribute in the ith entry in the result

return_value[i]["attribute"]["count"] = number of values for

 attribute in ith entry

return_value[i]["attribute"][j] = jth value of attribute in ith entry

 see also ldap_first_entry() and ldap_next_entry()

ldap_get_values (PHP3 , PHP4)

Get all values from a result entry

array ldap_get_values (int link_identifier, int result_entry_identifier, string attribute)

 Returns an array of values for the attribute on success and false on error.

 ldap_get_values() function is used to read all the values of the attribute in the entry in the result. entry is specified by the result_entry_identifier. The number of values can be found by indexing "count" in the resultant array. Individual values are accessed by integer index in the array. The first index is 0.

 This call needs a result_entry_identifier, so needs to be preceded by one of the ldap search calls and one of the calls to get an individual entry.

 You application will either be hard coded to look for certain attributes (such as "surname" or "mail") or you will have to use the ldap_get_attributes() call to work out what attributes exist for a given entry.

 LDAP allows more than one entry for an attribute, so it can, for example, store a number of email addresses for one person's directory entry all labeled with the attribute "mail"

return_value["count"] = number of values for attribute

return_value[0] = first value of attribute

return_value[i] = ith value of attribute

Example 1. List all values of the "mail" attribute for a directory entry

// $ds is a valid link identifier for a directory server

// $sr is a valid search result from a prior call to

// one of the ldap directory search calls

// $entry is a valid entry identifier from a prior call to

// one of the calls that returns a directory entry

$values = ldap_get_values($ds, $entry,"mail");

echo $values["count"]." email addresses for this entry.<p>";

for ($i=0; $i < $values["count"]; $i++)

 echo $values[$i]."
";

ldap_get_values_len (PHP3 >= 3.0.13, PHP4 >= 4.0RC2)

Get all binary values from a result entry

array ldap_get_values_len (int link_identifier, int result_entry_identifier, string attribute)

 Returns an array of values for the attribute on success and false on error.

 ldap_get_values_len() function is used to read all the values of the attribute in the entry in the result. entry is specified by the result_entry_identifier. The number of values can be found by indexing "count" in the resultant array. Individual values are accessed by integer index in the array. The first index is 0.

 This function is used exactly like ldap_get_values() except that it handles binary data and not string data.

Note: This function was added in 4.0.

ldap_list (PHP3 , PHP4)

Single-level search

int ldap_list (int link_identifier, string base_dn, string filter [, array attributes [, int attrsonly [, int sizelimit [, int timelimit [, int deref]]]]])

 Returns a search result identifier or false on error.

 ldap_list() performs the search for a specified filter on the directory with the scope LDAP_SCOPE_ONELEVEL.

 LDAP_SCOPE_ONELEVEL means that the search should only return information that is at the level immediately below the base dn given in the call. (Equivalent to typing "ls" and getting a list of files and folders in the current working directory.)

 This call takes 5 optional parameters. See ldap_search() notes.

Note: These optional parameters were added in 4.0.2: attrsonly, sizelimit, timelimit, deref.

Example 1. Produce a list of all organizational units of an organization

// $ds is a valid link identifier for a directory server

$basedn = "o=My Company, c=US";

$justthese = array("ou");

$sr=ldap_list($ds, $basedn, "ou=*", $justthese);

$info = ldap_get_entries($ds, $sr);

for ($i=0; $i<$info["count"]; $i++)

 echo $info[$i]["ou"][0] ;

ldap_modify (PHP3 , PHP4)

Modify an LDAP entry

int ldap_modify (int link_identifier, string dn, array entry)

 Returns true on success and false on error.

 ldap_modify() function is used to modify the existing entries in the LDAP directory. The structure of the entry is same as in ldap_add().

ldap_mod_add (PHP3 >= 3.0.8, PHP4)

Add attribute values to current attributes

int ldap_mod_add (int link_identifier, string dn, array entry)

 returns true on success and false on error.

 This function adds attribute(s) to the specified dn. It performs the modification at the attribute level as opposed to the object level. Object-level additions are done by the ldap_add() function.

ldap_mod_del (PHP3 >= 3.0.8, PHP4)

Delete attribute values from current attributes

int ldap_mod_del (int link_identifier, string dn, array entry)

 returns true on success and false on error.

 This function removes attribute(s) from the specified dn. It performs the modification at the attribute level as opposed to the object level. Object-level deletions are done by the ldap_del() function.

ldap_mod_replace (PHP3 >= 3.0.8, PHP4)

Replace attribute values with new ones

int ldap_mod_replace (int link_identifier, string dn, array entry)

 returns true on success and false on error.

 This function replaces attribute(s) from the specified dn. It performs the modification at the attribute level as opposed to the object level. Object-level modifications are done by the ldap_modify() function.

ldap_next_attribute (PHP3 , PHP4)

Get the next attribute in result

string ldap_next_attribute (int link_identifier, int result_entry_identifier, int ber_identifier)

 Returns the next attribute in an entry on success and false on error.

 ldap_next_attribute() is called to retrieve the attributes in an entry. The internal state of the pointer is maintained by the ber_identifier. It is passed by reference to the function. The first call to ldap_next_attribute() is made with the result_entry_identifier returned from ldap_first_attribute().

 see also ldap_get_attributes()

ldap_next_entry (PHP3 , PHP4)

Get next result entry

int ldap_next_entry (int link_identifier, int result_entry_identifier)

 Returns entry identifier for the next entry in the result whose entries are being read starting with ldap_first_entry(). If there are no more entries in the result then it returns false.

 ldap_next_entry() function is used to retrieve the entries stored in the result. Successive calls to the ldap_next_entry() return entries one by one till there are no more entries. The first call to ldap_next_entry() is made after the call to ldap_first_entry() with the result_identifier as returned from the ldap_first_entry().

 see also ldap_get_entries()

ldap_read (PHP3 , PHP4)

Read an entry

int ldap_read (int link_identifier, string base_dn, string filter [, array attributes [, int attrsonly [, int sizelimit [, int timelimit [, int deref]]]]])

 Returns a search result identifier or false on error.

 ldap_read() performs the search for a specified filter on the directory with the scope LDAP_SCOPE_BASE. So it is equivalent to reading an entry from the directory.

 An empty filter is not allowed. If you want to retrieve absolutely all information for this entry, use a filter of "objectClass=*". If you know which entry types are used on the directory server, you might use an appropriate filter such as "objectClass=inetOrgPerson".

 This call takes 5 optional parameters. See ldap_search() notes.

Note: These optional parameters were added in 4.0.2: attrsonly, sizelimit, timelimit, deref.

ldap_search (PHP3 , PHP4)

Search LDAP tree

int ldap_search (int link_identifier, string base_dn, string filter [, array attributes [, int attrsonly [, int sizelimit [, int timelimit [, int deref]]]]])

 Returns a search result identifier or false on error.

 ldap_search() performs the search for a specified filter on the directory with the scope of LDAP_SCOPE_SUBTREE. This is equivalent to searching the entire directory. base_dn specifies the base DN for the directory.

 There is a optional fourth parameter, that can be added to restrict the attributes and values returned by the server to just those required. This is much more efficient than the default action (which is to return all attributes and their associated values). The use of the fourth parameter should therefore be considered good practice.

 The fourth parameter is a standard PHP string array of the required attributes, eg array("mail","sn","cn") Note that the "dn" is always returned irrespective of which attributes types are requested.

 Note too that some directory server hosts will be configured to return no more than a preset number of entries. If this occurs, the server will indicate that it has only returned a partial results set. This occurs also if the sixth parameter sizelimit has been used to limit the count of fetched entries.

 The fifth parameter attrsonly should be set to 1 if only attribute types are wanted. If set to 0 both attributes types and attribute values are fetched which is the default behaviour.

 With the sixth parameter sizelimit it is possible to limit the count of entries fetched. Setting this to 0 means no limit. NOTE: This parameter can NOT override server-side preset sizelimit. You can set it lower though.

 The seventh parameter timelimit sets the number of seconds how long is spend on the search. Setting this to 0 means no limit. NOTE: This parameter can NOT override server-side preset timelimit. You can set it lower though.

 The eigth parameter deref specifies how aliases should be handled during the search. It can be one of the following:

•
 LDAP_DEREF_NEVER - (default) aliases are never dereferenced.

•
 LDAP_DEREF_SEARCHING - aliases should be dereferenced during the search but not when locating the base object of the search.

•
 LDAP_DEREF_FINDING - aliases should be dereferenced when locating the base object but not during the search.

•
 LDAP_DEREF_ALWAYS - aliases should be dereferenced always.

 These optional parameters were added in 4.0.2: attrsonly, sizelimit, timelimit, deref.

 The search filter can be simple or advanced, using boolean operators in the format described in the LDAP doumentation (see the Netscape Directory SDK (http://developer.netscape.com/docs/manuals/directory/41/ag/find.htm) for full information on filters).

 The example below retrieves the organizational unit, surname, given name and email address for all people in "My Company" where the surname or given name contains the substring $person. This example uses a boolean filter to tell the server to look for information in more than one attribute.

Example 1. LDAP search

// $ds is a valid link identifier for a directory server

// $person is all or part of a person's name, eg "Jo"

$dn = "o=My Company, c=US";

$filter="(|(sn=$person*)(givenname=$person*))";

$justthese = array("ou", "sn", "givenname", "mail");

$sr=ldap_search($ds, $dn, $filter, $justthese);

$info = ldap_get_entries($ds, $sr);

print $info["count"]." entries returned<p>";

ldap_unbind (PHP3 , PHP4)

Unbind from LDAP directory

int ldap_unbind (int link_identifier)

 Returns true on success and false on error.

 ldap_unbind() function unbinds from the LDAP directory.

XXXII. Mail functions

 The mail() function allows you to send mail.

mail (PHP3 , PHP4)

send mail

bool mail (string to, string subject, string message [, string additional_headers])

 Mail() automatically mails the message specified in message to the receiver specified in to. Multiple recipients can be specified by putting a comma between each address in to.

Example 1. Sending mail.

mail("rasmus@lerdorf.on.ca", "My Subject", "Line 1\nLine 2\nLine 3");

 If a fourth string argument is passed, this string is inserted at the end of the header. This is typically used to add extra headers. Multiple extra headers are separated with a newline.

Example 2. Sending mail with extra headers.

mail("nobody@aol.com", "the subject", $message,

 "From: webmaster@$SERVER_NAME\nReply-To: webmaster@$SERVER_NAME\nX-Mailer: PHP/" . phpversion());

ezmlm_hash (PHP3 CVS only, PHP4 CVS only)

Calculate the hash value needed by EZMLM

int ezmlm_hash (string addr)

 ezmlm_hash() calculates the hash value needed when keeping EZMLM mailing lists in a MySQL database.

Example 1. Calculating the hash and subscribing a user

$user = "kris@koehntopp.de";

$hash = ezmlm_hash ($user);

$query = sprintf ("INSERT INTO sample VALUES (%s, '%s')", $hash, $user);

$db->query($query); // using PHPLIB db interface

XXXIII. Mathematical Functions

Introduction

 These math functions will only handle values within the range of the long and double types on your computer. If you need to handle bigger numbers, take a look at the arbitrary precision math functions.

Math constants

 The following values are defined as constants in PHP by the math extension:

Table 1. Math constants

	Constant
	Value
	Description

	M_PI
	3.14159265358979323846
	Der Wert π (Pi)

	M_E
	2.7182818284590452354
	e

	M_LOG2E
	1.4426950408889634074
	log_2 e

	M_LOG10E
	0.43429448190325182765
	log_10 e

	M_LN2
	0.69314718055994530942
	log_e 2

	M_LN10
	2.30258509299404568402
	log_e 10

	M_PI_2
	1.57079632679489661923
	pi/2

	M_PI_4
	0.78539816339744830962
	pi/4

	M_1_PI
	0.31830988618379067154
	1/pi

	M_2_PI
	0.63661977236758134308
	2/pi

	M_2_SQRTPI
	1.12837916709551257390
	2/sqrt(pi)

	M_SQRT2
	1.41421356237309504880
	sqrt(2)

	M_SQRT1_2
	0.70710678118654752440
	1/sqrt(2)

 Only M_PI is available in PHP versions up to and including PHP4RC1. All other constants are available starting with PHP4.0.

abs (PHP3 , PHP4)

Absolute value

mixed abs (mixed number)

 Returns the absolute value of number. If the argument number is float, return type is also float, otherwise it is int.

acos (PHP3 , PHP4)

Arc cosine

float acos (float arg)

 Returns the arc cosine of arg in radians.

 See also asin() and atan().

asin (PHP3 , PHP4)

Arc sine

float asin (float arg)

 Returns the arc sine of arg in radians.

 See also acos() and atan().

atan (PHP3 , PHP4)

Arc tangent

float atan (float arg)

 Returns the arc tangent of arg in radians.

 See also asin() and acos().

atan2 (PHP3 >= 3.0.5, PHP4)

arc tangent of two variables

float atan2 (float y, float x)

 This function calculates the arc tangent of the two variables x and y. It is similar to calculating the arc tangent of y / x, except that the signs of both arguments are used to determine the quadrant of the result.

 The function returns the result in radians, which is between -PI and PI (inclusive).

 See also acos() and atan().

base_convert (PHP3 >= 3.0.6, PHP4)

Convert a number between arbitrary bases

strin base_convert (string number, int frombase, int tobase)

 Returns a string containing number represented in base tobase. The base in which number is given is specified in frombase. Both frombase and tobase have to be between 2 and 36, inclusive. Digits in numbers with a base higher than 10 will be represented with the letters a-z, with a meaning 10, b meaning 11 and z meaning 36.

Example 1. Base_convert()

$binary = base_convert ($hexadecimal, 16, 2);

bindec (PHP3 , PHP4)

Binary to decimal

int bindec (string binary_string)

 Returns the decimal equivalent of the binary number represented by the binary_string argument.

 Octdec converts a binary number to a decimal number. The largest number that can be converted is 31 bits of 1's or 2147483647 in decimal.

 See also the decbin() function.

ceil (PHP3 , PHP4)

Round fractions up

int ceil (float number)

 Returns the next highest integer value from number. Using ceil() on integers is absolutely a waste of time.

 NOTE: PHP/FI 2's ceil() returned a float. Use: $new = (double)ceil($number); to get the old behaviour.

 See also floor() and round().

cos (PHP3 , PHP4)

Cosine

float cos (float arg)

 Returns the cosine of arg in radians.

 See also sin() and tan().

decbin (PHP3 , PHP4)

Decimal to binary

string decbin (int number)

 Returns a string containing a binary representation of the given number argument. The largest number that can be converted is 2147483647 in decimal resulting to a string of 31 1's.

 See also the bindec() function.

dechex (PHP3 , PHP4)

Decimal to hexadecimal

string dechex (int number)

 Returns a string containing a hexadecimal representation of the given number argument. The largest number that can be converted is 2147483647 in decimal resulting to "7fffffff".

 See also the hexdec() function.

decoct (PHP3 , PHP4)

Decimal to octal

string decoct (int number)

 Returns a string containing an octal representation of the given number argument. The largest number that can be converted is 2147483647 in decimal resulting to "17777777777".

 See also octdec().

deg2rad (PHP3 >= 3.0.4, PHP4)

 Converts the number in degrees to the radian equivalent

double deg2rad (double number)

 This function converts number from degrees to the radian equivalent.

 See also rad2deg().

exp (PHP3 , PHP4)

e to the power of ...

float exp (float arg)

 Returns e raised to the power of arg.

 See also pow().

floor (PHP3 , PHP4)

Round fractions down

int floor (float number)

 Returns the next lowest integer value from number. Using floor() on integers is absolutely a waste of time.

 NOTE: PHP/FI 2's floor() returned a float. Use: $new = (double)floor($number); to get the old behaviour.

 See also ceil() and round().

getrandmax (PHP3 , PHP4)

Show largest possible random value

int getrandmax (void)

 Returns the maximum value that can be returned by a call to rand().

 See also rand(), srand(), mt_rand(), mt_srand(), and mt_getrandmax().

hexdec (PHP3 , PHP4)

Hexadecimal to decimal

int hexdec (string hex_string)

 Returns the decimal equivalent of the hexadecimal number represented by the hex_string argument. HexDec converts a hexadecimal string to a decimal number. The largest number that can be converted is 7fffffff or 2147483647 in decimal.

 See also the dechex() function.

log (PHP3 , PHP4)

Natural logarithm

float log (float arg)

 Returns the natural logarithm of arg.

log10 (PHP3 , PHP4)

Base-10 logarithm

float log10 (float arg)

 Returns the base-10 logarithm of arg.

max (PHP3 , PHP4)

Find highest value

mixed max (mixed arg1, mixed arg2, mixed argn)

 max() returns the numerically highest of the parameter values.

 If the first parameter is an array, max() returns the highest value in that array. If the first parameter is an integer, string or double, you need at least two parameters and max() returns the biggest of these values. You can compare an unlimited number of values.

 If one or more of the values is a double, all the values will be treated as doubles, and a double is returned. If none of the values is a double, all of them will be treated as integers, and an integer is returned.

min (PHP3 , PHP4)

Find lowest value

mixed min (mixed arg1, mixed arg2, mixed argn)

 Min() returns the numerically lowest of the parameter values.

 If the first parameter is an array, min() returns the lowest value in that array. If the first parameter is an integer, string or double, you need at least two parameters and min() returns the lowest of these values. You can compare an unlimited number of values.

 If one or more of the values is a double, all the values will be treated as doubles, and a double is returned. If none of the values is a double, all of them will be treated as integers, and an integer is returned.

mt_rand (PHP3 >= 3.0.6, PHP4)

Generate a better random value

int mt_rand ([int min [, int max]])

 Many random number generators of older libcs have dubious or unknown characteristics and are slow. By default, PHP uses the libc random number generator with the rand() function. mt_rand() function is a drop-in replacement for this. It uses a random number generator with known characteristics, the Mersenne Twister, which will produce random numbers that should be suitable for cryptographic purposes and is four times faster than what the average libc provides. The Homepage of the Mersenne Twister can be found at http://www.math.keio.ac.jp/~matumoto/emt.html, and an optimized version of the MT source is available from http://www.scp.syr.edu/~marc/hawk/twister.html.

 If called without the optional min, max arguments mt_rand() returns a pseudo-random value between 0 and RAND_MAX. If you want a random number between 5 and 15 (inclusive), for example, use mt_rand (5, 15).

 Remember to seed the random number generator before use with mt_srand().

Note: In versions before 3.0.7 the meaning of max was range. To get the same results in these versions the short example should be mt_rand (5, 11) to get a random number between 5 und 15.

 See also mt_srand(), mt_getrandmax(), srand(), rand() and getrandmax().

mt_srand (PHP3 >= 3.0.6, PHP4)

Seed the better random number generator

void mt_srand (int seed)

 Seeds the random number generator with seed.

// seed with microseconds since last "whole" second

mt_srand ((double) microtime() * 1000000);

$randval = mt_rand();

 See also mt_rand(), mt_getrandmax(), srand(), rand(), and getrandmax().

mt_getrandmax (PHP3 >= 3.0.6, PHP4)

Show largest possible random value

int mt_getrandmax (void)

 Returns the maximum value that can be returned by a call to mt_rand().

 See also mt_rand(), mt_srand() rand(), srand(), and getrandmax().

number_format (PHP3 , PHP4)

Format a number with grouped thousands

string number_format (float number, int decimals, string dec_point, string thousands_sep)

 Number_format() returns a formatted version of number. This function accepts either one, two or four parameters (not three):

If only one parameter is given, Number will be formatted without decimals, but with a comma (",") between every group of thousands.

 If two parameters are given, number will be formatted with decimals decimals with a dot (".") in front, and a comma (",") between every group of thousands.

 If all four parameters are given, number will be formatted with decimals decimals, dec_point instead of a dot (".") before the decimals and thousands_sep instead of a comma (",") between every group of thousands.

octdec (PHP3 , PHP4)

Octal to decimal

int octdec (string octal_string)

 Returns the decimal equivalent of the octal number represented by the octal_string argument. OctDec converts an octal string to a decimal number. The largest number that can be converted is 17777777777 or 2147483647 in decimal.

 See also decoct().

pi (PHP3 , PHP4)

Get value of pi

double pi (void)

 Returns an approximation of pi.

pow (PHP3 , PHP4)

Exponential expression

float pow (float base, float exp)

 Returns base raised to the power of exp.

 See also exp().

rad2deg (PHP3 >= 3.0.4, PHP4)

 Converts the radian number to the equivalent number in degrees

double rad2deg (double number)

 This function converts number from radian to degrees.

 See also deg2rad().

rand (PHP3 , PHP4)

Generate a random value

int rand ([int min [, int max]])

 If called without the optional min, max arguments rand() returns a pseudo-random value between 0 and RAND_MAX. If you want a random number between 5 and 15 (inclusive), for example, use rand (5, 15).

 Remember to seed the random number generator before use with srand().

Note: In versions before 3.0.7 the meaning of max was range. To get the same results in these versions the short example should be rand (5, 11) to get a random number between 5 und 15.

 See also srand(), getrandmax(), mt_rand(), mt_srand(), and mt_getrandmax().

round (PHP3 , PHP4)

Rounds a float

double round (double val [, int precision])

 Returns the rounded value of val to specified precision.

$foo = round (3.4); // $foo == 3.0

$foo = round (3.5); // $foo == 4.0

$foo = round (3.6); // $foo == 4.0

$foo = round (1.95583, 2); // $foo == 1.96

 See also ceil() and floor().

sin (PHP3 , PHP4)

Sine

float sin (float arg)

 Returns the sine of arg in radians.

 See also cos() and tan().

sqrt (PHP3 , PHP4)

Square root

float sqrt (float arg)

 Returns the square root of arg.

srand (PHP3 , PHP4)

Seed the random number generator

void srand (int seed)

 Seeds the random number generator with seed.

// seed with microseconds since last "whole" second

srand ((double) microtime() * 1000000);

$randval = rand();

 See also rand(), getrandmax(), mt_rand(), mt_srand(), and mt_getrandmax().

tan (PHP3 , PHP4)

Tangent

float tan (float arg)

 Returns the tangent of arg in radians.

 See also sin() and cos().

XXXIV. MCAL functions

 MCAL stands for Modular Calendar Access Library.

 Libmcal is a C library for accessing calendars. It's written to be very modular, with plugable drivers. MCAL is the calendar equivalent of the IMAP module for mailboxes.

 With mcal support, a calendar stream can be opened much like the mailbox stream with the IMAP support. Calendars can be local file stores, remote ICAP servers, or other formats that are supported by the mcal library.

 Calendar events can be pulled up, queried, and stored. There is also support for calendar triggers (alarms) and reoccuring events.

 With libmcal, central calendar servers can be accessed and used, removing the need for any specific database or local file programming.

 To get these functions to work, you have to compile PHP with --with-mcal. That requires the mcal library to be installed. Grab the latest version from http://mcal.chek.com/ and compile and install it.

 The following constants are defined when using the MCAL module: MCAL_SUNDAY, MCAL_MONDAY, MCAL_TUESDAY, MCAL_WEDNESDAY, MCAL_THURSDAY, MCAL_FRIDAY, MCAL_SATURDAY, MCAL_RECUR_NONE, MCAL_RECUR_DAILY, MCAL_RECUR_WEEKLY, MCAL_RECUR_MONTHLY_MDAY, MCAL_RECUR_MONTHLY_WDAY, MCAL_RECUR_YEARLY, MCAL_JANUARY, MCAL_FEBRUARY, MCAL_MARCH, MCAL_APRIL, MCAL_MAY, MCAL_JUNE, MCAL_JULY, MCAL_AUGUGT, MCAL_SEPTEMBER, MCAL_OCTOBER, MCAL_NOVEMBER, and MCAL_DECEMBER. Most of the functions use an internal event structure that is unique for each stream. This alleviates the need to pass around large objects between functions. There are convenience functions for setting, initializing, and retrieving the event structure values.

mcal_open (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Opens up an MCAL connection

int mcal_open (string calendar, string username, string password, string options)

 Returns an MCAL stream on success, false on error.

 mcal_open() opens up an MCAL connection to the specified calendar store. If the optional options is specified, passes the options to that mailbox also. The streams internal event structure is also initialized upon connection.

mcal_close (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Close an MCAL stream

int mcal_close (int mcal_stream, int flags)

 Closes the given mcal stream.

mcal_fetch_event (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Fetches an event from the calendar stream

object mcal_fetch_event (int mcal_stream, int event_id [, int options])

 mcal_fetch_event() fetches an event from the calendar stream specified by id.

 Returns an event object consisting of:

•
 int id - ID of that event.

•
 int public - TRUE if the event if public, FALSE if it is private.

•
 string category - Category string of the event.

•
 string title - Title string of the event.

•
 string description - Description string of the event.

•
 int alarm - number of minutes before the event to send an alarm/reminder.

•
 object start - Object containing a datetime entry.

•
 object end - Object containing a datetime entry.

•
 int recur_type - recurrence type

•
 int recur_interval - recurrence interval

•
 datetime recur_enddate - recurrence end date

•
 int recur_data - recurrence data

 All datetime entries consist of an object that contains:

•
 int year - year

•
 int month - month

•
 int mday - day of month

•
 int hour - hour

•
 int min - minutes

•
 int sec - seconds

•
 int alarm - minutes before event to send an alarm

mcal_list_events (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Return a list of events between two given datetimes

array mcal_list_events (int mcal_stream [, int begin_year [, int begin_month [, int begin_day [, int end_year [, int end_month [, int end_day]]]]]])

 Returns an array of event ID's that are between the start and end dates, or if just a stream is given, uses the start and end dates in the global event structure.

 mcal_list_events() function takes in an optional beginning date and an end date for a calendar stream. An array of event id's that are between the given dates or the internal event dates are returned.

mcal_append_event (PHP4 >= 4.0RC1)

Store a new event into an MCAL calendar

int mcal_append_event (int mcal_stream)

 mcal_append_event() Stores the global event into an MCAL calendar for the given stream.

 Returns the uid of the newly inserted event.

mcal_store_event (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Modify an existing event in an MCAL calendar

int mcal_store_event (int mcal_stream)

 mcal_store_event() Stores the modifications to the current global event for the given stream.

 Returns true on success and false on error.

mcal_delete_event (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Delete an event from an MCAL calendar

int mcal_delete_event (int uid)

 mcal_delete_event() deletes the calendar event specified by the uid.

 Returns true.

mcal_snooze (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Turn off an alarm for an event

int mcal_snooze (int uid)

 mcal_snooze() turns off an alarm for a calendar event specified by the uid.

 Returns true.

mcal_list_alarms (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Return a list of events that has an alarm triggered at the given datetime

array mcal_list_events (int mcal_stream [, int begin_year [, int begin_month [, int begin_day [, int end_year [, int end_month [, int end_day]]]]]])

 Returns an array of event ID's that has an alarm going off between the start and end dates, or if just a stream is given, uses the start and end dates in the global event structure.

 mcal_list_events() function takes in an optional beginning date and an end date for a calendar stream. An array of event id's that are between the given dates or the internal event dates are returned.

mcal_event_init (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Initializes a streams global event structure

int mcal_event_init (int stream)

 mcal_event_init() initializes a streams global event structure. this effectively sets all elements of the structure to 0, or the default settings.

 Returns true.

mcal_event_set_category (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Sets the category of the streams global event structure

int mcal_event_set_category (int stream, string category)

 mcal_event_set_category() sets the streams global event structure's category to the given string.

 Returns true.

mcal_event_set_title (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Sets the title of the streams global event structure

int mcal_event_set_title (int stream, string title)

 mcal_event_set_title() sets the streams global event structure's title to the given string.

 Returns true.

mcal_event_set_description (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Sets the description of the streams global event structure

int mcal_event_set_description (int stream, string description)

 mcal_event_set_description() sets the streams global event structure's description to the given string.

 Returns true.

mcal_event_set_start (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Sets the start date and time of the streams global event structure

int mcal_event_set_start (int stream, int year, int month [, int day [, int hour [, int min [, int sec]]]])

 mcal_event_set_start() sets the streams global event structure's start date and time to the given values.

 Returns true.

mcal_event_set_end (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Sets the end date and time of the streams global event structure

int mcal_event_set_end (int stream, int year, int month [, int day [, int hour [, int min [, int sec]]]])

 mcal_event_set_end() sets the streams global event structure's end date and time to the given values.

 Returns true.

mcal_event_set_alarm (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Sets the alarm of the streams global event structure

int mcal_event_set_alarm (int stream, int alarm)

 mcal_event_set_alarm() sets the streams global event structure's alarm to the given minutes before the event.

 Returns true.

mcal_event_set_class (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Sets the class of the streams global event structure

int mcal_event_set_class (int stream, int class)

 mcal_event_set_class() sets the streams global event structure's class to the given value. The class is either 1 for public, or 0 for private.

 Returns true.

mcal_is_leap_year (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Returns if the given year is a leap year or not

int mcal_is_leap_year (int year)

 mcal_is_leap_year() returns 1 if the given year is a leap year, 1 if not.

mcal_days_in_month (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Returns the number of days in the given month

int mcal_days_in_month (int month, int leap year)

 mcal_days_in_month() Returns the number of days in the given month, taking into account if the given year is a leap year or not.

mcal_date_valid (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Returns true if the given year, month, day is a valid date

int mcal_date_valid (int year, int month, int day)

 mcal_date_valid() Returns true if the given year, month and day is a valid date, false if not.

mcal_time_valid (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Returns true if the given year, month, day is a valid time

int mcal_time_valid (int hour, int minutes, int seconds)

 mcal_time_valid() Returns true if the given hour, minutes and seconds is a valid time, false if not.

mcal_day_of_week (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Returns the day of the week of the given date

int mcal_ (int year, int month, int day)

 mcal_day_of_week() returns the day of the week of the given date

mcal_day_of_year (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Returns the day of the year of the given date

int mcal_ (int year, int month, int day)

 mcal_day_of_year() returns the day of the year of the given date

mcal_date_compare (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Compares two dates

int mcal_date_compare (int a_year, int a_month, int a_day, int b_year, int b_month, int b_day)

 mcal_date_compare() Compares the two given dates, returns <0, 0, >0 if a<b, a==b, a>b respectively

mcal_next_recurrence (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Returns the next recurrence of the event

int mcal_next_recurrence (int stream, int weekstart, array next)

 mcal_next_recurrence() returns an object filled with the next date the event occurs, on or after the supplied date. Returns empty date field if event does not occur or something is invalid. Uses weekstart to determine what day is considered the beginning of the week.

mcal_event_set_recur_none (PHP3 >= 3.0.15, PHP4 >= 4.0RC1)

 Sets the recurrence of the streams global event structure

int mcal_event_set_recur_none (int stream)

 mcal_event_set_recur_none() sets the streams global event structure to not recur (event->recur_type is set to MCAL_RECUR_NONE).

mcal_event_set_recur_daily (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Sets the recurrence of the streams global event structure

int mcal_event_set_recur_daily (int stream, int year, int month, int day, int interval)

 mcal_event_set_recur_daily() sets the streams global event structure's recurrence to the given value to be reoccuring on a daily basis, ending at the given date.

mcal_event_set_recur_weekly (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Sets the recurrence of the streams global event structure

int mcal_event_set_recur_weekly (int stream, int year, int month, int day, int interval, int weekdays)

 mcal_event_set_recur_weekly() sets the streams global event structure's recurrence to the given value to be reoccuring on a weekly basis, ending at the given date.

mcal_event_set_recur_monthly_mday (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Sets the recurrence of the streams global event structure

int mcal_event_set_recur_monthly_mday (int stream, int year, int month, int day, int interval)

 mcal_event_set_recur_monthly_mday() sets the streams global event structure's recurrence to the given value to be reoccuring on a monthly by month day basis, ending at the given date.

mcal_event_set_recur_monthly_wday (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Sets the recurrence of the streams global event structure

int mcal_event_set_recur_monthly_wday (int stream, int year, int month, int day, int interval)

 mcal_event_set_recur_monthly_wday() sets the streams global event structure's recurrence to the given value to be reoccuring on a monthly by week basis, ending at the given date.

mcal_event_set_recur_yearly (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Sets the recurrence of the streams global event structure

int mcal_event_set_recur_yearly (int stream, int year, int month, int day, int interval)

 mcal_event_set_recur_yearly() sets the streams global event structure's recurrence to the given value to be reoccuring on a yearly basis,ending at the given date .

mcal_fetch_current_stream_event (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Returns an object containing the current streams event structure

int mcal_fetch_current_stream_event (int stream)

 mcal_event_fetch_current_stream_event() returns the current stream's event structure as an object containing:

•
 int id - ID of that event.

•
 int public - TRUE if the event if public, FALSE if it is private.

•
 string category - Category string of the event.

•
 string title - Title string of the event.

•
 string description - Description string of the event.

•
 int alarm - number of minutes before the event to send an alarm/reminder.

•
 object start - Object containing a datetime entry.

•
 object end - Object containing a datetime entry.

•
 int recur_type - recurrence type

•
 int recur_interval - recurrence interval

•
 datetime recur_enddate - recurrence end date

•
 int recur_data - recurrence data

 All datetime entries consist of an object that contains:

•
 int year - year

•
 int month - month

•
 int mday - day of month

•
 int hour - hour

•
 int min - minutes

•
 int sec - seconds

•
 int alarm - minutes before event to send an alarm

mcal_event_add_attribute (PHP3 >= 3.0.15, PHP4 >= 4.0RC1)

 Adds an attribute and a value to the streams global event structure

void mcal_event_add_attribute (int stream, string attribute, string value)

 mcal_event_add_attribute() adds an attribute to the stream's global event structure with the value given by "value" .

XXXV. Mcrypt Encryption Functions

 These functions work using mcrypt (ftp://argeas.cs-net.gr/pub/unix/mcrypt/).

 This is an interface to the mcrypt library, which supports a wide variety of block algorithms such as DES, TripleDES, Blowfish (default), 3-WAY, SAFER-SK64, SAFER-SK128, TWOFISH, TEA, RC2 and GOST in CBC, OFB, CFB and ECB cipher modes. Additionally, it supports RC6 and IDEA which are considered "non-free".

 If you linked against libmcrypt 2.4.x, the following additional block algorithms are supported: CAST, LOKI97, RIJNDAEL, SAFERPLUS, SERPENT and the following stream ciphers: ENIGMA (crypt), PANAMA, RC4 and WAKE. With libmcrypt 2.4.x another cipher mode is also available; nOFB.

 To use it, download libmcrypt-x.x.tar.gz from here (ftp://argeas.cs-net.gr/pub/unix/mcrypt/) and follow the included installation instructions. You need to compile PHP with the --with-mcrypt parameter to enable this extension. Make sure you compile libmcrypt with the option --disable-posix-threads.

 Mcrypt can be used to encrypt and decrypt using the above mentioned ciphers. If you linked against libmcrypt-2.2.x, the four important mcrypt commands (mcrypt_cfb(), mcrypt_cbc(), mcrypt_ecb(), and mcrypt_ofb()) can operate in both modes which are named MCRYPT_ENCRYPT and MCRYPT_DECRYPT, respectively.

Example 1. Encrypt an input value with TripleDES in ECB mode

<?php

$key = "this is a very secret key";

$input = "Let us meet at 9 o'clock at the secret place.";

$encrypted_data = mcrypt_ecb (MCRYPT_TripleDES, $key, $input, MCRYPT_ENCRYPT);

?>

 This example will give you the encrypted data as a string in $encrypted_data.

 If you linked against libmcrypt 2.4.x, these functions are still available, but it is recommended that you use the advanced functions.

Example 2. Encrypt an input value with TripleDES in ECB mode

<?php

$key = "this is a very secret key";

$input = "Let us meet at 9 o'clock at the secret place.";

$td = mcrypt_open_module (MCRYPT_TripleDES, "", MCRYPT_MODE_ECB);

$iv = mcrypt_create_iv (mcrypt_enc_get_iv_size ($td), MCRYPT_RAND);

mcrypt_generic_init ($td, $key, $iv);

$encrypted_data = mcrypt_generic ($td, $input);

mcrypt_generic_end ($td);

?>

 This example will give you the encrypted data as a string in $encrypted_data.

 Mcrypt can operate in four block cipher modes (CBC, OFB, CFB, and ECB). If linked against libmcrypt-2.4.x mcrypt can also operate in the block cipher mode nOFB and in STREAM mode. Then there are also constants in the form MCRYPT_MODE_mode for use with several functions. We will outline the normal use for each of these modes. For a more complete reference and discussion see Applied Cryptography by Schneier (ISBN 0-471-11709-9).

•
 ECB (electronic codebook) is suitable for random data, such as encrypting other keys. Since data there is short and random, the disadvantages of ECB have a favorable negative effect.

•
 CBC (cipher block chaining) is especially suitable for encrypting files where the security is increased over ECB significantly.

•
 CFB (cipher feedback) is the best mode for encrypting byte streams where single bytes must be encrypted.

•
 OFB (output feedback, in 8bit) is comparable to CFB, but can be used in applications where error propagation cannot be tolerated. It's insecure (because it operates in 8bit mode) so it is not recommended to use it.

•
 nOFB (output feedback, in nbit) is comparable to OFB, but more secure because it operates on the block size of the algorithm.

•
 STREAM is an extra mode to include some stream algorithms like WAKE or RC4.

 PHP does not support encrypting/decrypting bit streams currently. As of now, PHP only supports handling of strings.

 For a complete list of supported ciphers, see the defines at the end of mcrypt.h. The general rule with the mcrypt-2.2.x API is that you can access the cipher from PHP with MCRYPT_ciphername. With the mcrypt-2.4.x API these constants also work, but it is possible to specify the name of the cipher as a string with a call to mcrypt_open_module().

 Here is a short list of ciphers which are currently supported by the mcrypt extension. If a cipher is not listed here, but is listed by mcrypt as supported, you can safely assume that this documentation is outdated.

•
 MCRYPT_ARCFOUR_IV (libmcrypt 2.4.x only)

•
 MCRYPT_ARCFOUR (libmcrypt 2.4.x only)

•
 MCRYPT_BLOWFISH

•
 MCRYPT_CAST_128

•
 MCRYPT_CAST_256

•
 MCRYPT_CRYPT

•
 MCRYPT_DES

•
 MCRYPT_DES_COMPAT (libmcrypt 2.2.x only)

•
 MCRYPT_ENIGMA (libmcrypt 2.4.x only, alias for MCRYPT_CRYPT)

•
 MCRYPT_GOST

•
 MCRYPT_IDEA (non-free)

•
 MCRYPT_LOKI97 (libmcrypt 2.4.x only)

•
 MCRYPT_MARS (libmcrypt 2.4.x only, non-free)

•
 MCRYPT_PANAMA (libmcrypt 2.4.x only)

•
 MCRYPT_RIJNDAEL_128 (libmcrypt 2.4.x only)

•
 MCRYPT_RIJNDAEL_192 (libmcrypt 2.4.x only)

•
 MCRYPT_RIJNDAEL_256 (libmcrypt 2.4.x only)

•
 MCRYPT_RC2

•
 MCRYPT_RC4 (libmcrypt 2.2.x only)

•
 MCRYPT_RC6 (libmcrypt 2.4.x only)

•
 MCRYPT_RC6_128 (libmcrypt 2.2.x only)

•
 MCRYPT_RC6_192 (libmcrypt 2.2.x only)

•
 MCRYPT_RC6_256 (libmcrypt 2.2.x only)

•
 MCRYPT_SAFER64

•
 MCRYPT_SAFER128

•
 MCRYPT_SAFERPLUS (libmcrypt 2.4.x only)

•
 MCRYPT_SERPENT (libmcrypt 2.4.x only)

•
 MCRYPT_SERPENT_128 (libmcrypt 2.2.x only)

•
 MCRYPT_SERPENT_192 (libmcrypt 2.2.x only)

•
 MCRYPT_SERPENT_256 (libmcrypt 2.2.x only)

•
 MCRYPT_SKIPJACK (libmcrypt 2.4.x only)

•
 MCRYPT_TEAN (libmcrypt 2.2.x only)

•
 MCRYPT_THREEWAY

•
 MCRYPT_TRIPLEDES

•
 MCRYPT_TWOFISH (for older mcrypt 2.x versions, or mcrypt 2.4.x)

•
 MCRYPT_TWOFISH128 (TWOFISHxxx are available in newer 2.x versions, but not in the 2.4.x versions)

•
 MCRYPT_TWOFISH192

•
 MCRYPT_TWOFISH256

•
 MCRYPT_WAKE (libmcrypt 2.4.x only)

•
 MCRYPT_XTEA (libmcrypt 2.4.x only)

 You must (in CFB and OFB mode) or can (in CBC mode) supply an initialization vector (IV) to the respective cipher function. The IV must be unique and must be the same when decrypting/encrypting. With data which is stored encrypted, you can take the output of a function of the index under which the data is stored (e.g. the MD5 key of the filename). Alternatively, you can transmit the IV together with the encrypted data (see chapter 9.3 of Applied Cryptography by Schneier (ISBN 0-471-11709-9) for a discussion of this topic).

mcrypt_get_cipher_name (PHP3 >= 3.0.8, PHP4)

Get the name of the specified cipher

string mcrypt_get_cipher_name (int cipher)

string mcrypt_get_cipher_name (string cipher)

 Mcrypt_get_cipher_name() is used to get the name of the specified cipher.

 Mcrypt_get_cipher_name() takes the cipher number as an argument (libmcrypt 2.2.x) or takes the cipher name as an argument (libmcrypt 2.4.x) and returns the name of the cipher or false, if the cipher does not exist.

Example 1. Mcrypt_get_cipher_name() Example

<?php

$cipher = MCRYPT_TripleDES;

print mcrypt_get_cipher_name ($cipher);

?>

 The above example will produce:

TripleDES

mcrypt_get_block_size (PHP3 >= 3.0.8, PHP4)

Get the block size of the specified cipher

int mcrypt_get_block_size (int cipher)

 Mcrypt_get_block_size() is used to get the size of a block of the specified cipher.

 Mcrypt_get_block_size() takes one argument, the cipher and returns the size in bytes.

 See also: mcrypt_get_key_size().

mcrypt_get_key_size (PHP3 >= 3.0.8, PHP4)

Get the key size of the specified cipher

int mcrypt_get_key_size (int cipher)

 Mcrypt_get_key_size() is used to get the size of a key of the specified cipher.

 mcrypt_get_key_size() takes one argument, the cipher and returns the size in bytes.

 See also: mcrypt_get_block_size().

mcrypt_create_iv (PHP3 >= 3.0.8, PHP4)

 Create an initialization vector (IV) from a random source

string mcrypt_create_iv (int size, int source)

 Mcrypt_create_iv() is used to create an IV.

 mcrypt_create_iv() takes two arguments, size determines the size of the IV, source specifies the source of the IV.

 The source can be MCRYPT_RAND (system random number generator), MCRYPT_DEV_RANDOM (read data from /dev/random) and MCRYPT_DEV_URANDOM (read data from /dev/urandom). If you use MCRYPT_RAND, make sure to call srand() before to initialize the random number generator.

Example 1. Mcrypt_create_iv() example

<?php

$cipher = MCRYPT_TripleDES;

$block_size = mcrypt_get_block_size ($cipher);

$iv = mcrypt_create_iv ($block_size, MCRYPT_DEV_RANDOM);

?>

mcrypt_cbc (PHP3 >= 3.0.8, PHP4)

Encrypt/decrypt data in CBC mode

string mcrypt_cbc (int cipher, string key, string data, int mode [, string iv])

string mcrypt_cbc (string cipher, string key, string data, int mode [, string iv])

 The first prototype is when linked against libmcrypt 2.2.x, the second when linked against libmcrypt 2.4.x.

 Mcrypt_cbc() encrypts or decrypts (depending on mode) the data with cipher and key in CBC cipher mode and returns the resulting string.

 Cipher is one of the MCRYPT_ciphername constants.

 Key is the key supplied to the algorithm. It must be kept secret.

 Data is the data which shall be encrypted/decrypted.

 Mode is MCRYPT_ENCRYPT or MCRYPT_DECRYPT.

 IV is the optional initialization vector.

 See also: mcrypt_cfb(), mcrypt_ecb(), and mcrypt_ofb().

mcrypt_cfb (PHP3 >= 3.0.8, PHP4)

Encrypt/decrypt data in CFB mode

string mcrypt_cfb (int cipher, string key, string data, int mode, string iv)

string mcrypt_cfb (string cipher, string key, string data, int mode [, string iv])

 The first prototype is when linked against libmcrypt 2.2.x, the second when linked against libmcrypt 2.4.x.

 Mcrypt_cfb() encrypts or decrypts (depending on mode) the data with cipher and key in CFB cipher mode and returns the resulting string.

 Cipher is one of the MCRYPT_ciphername constants.

 Key is the key supplied to the algorithm. It must be kept secret.

 Data is the data which shall be encrypted/decrypted.

 Mode is MCRYPT_ENCRYPT or MCRYPT_DECRYPT.

 IV is the initialization vector.

 See also: mcrypt_cbc(), mcrypt_ecb(), and mcrypt_ofb().

mcrypt_ecb (PHP3 >= 3.0.8, PHP4)

Encrypt/decrypt data in ECB mode

string mcrypt_ecb (int cipher, string key, string data, int mode)

string mcrypt_ecb (string cipher, string key, string data, int mode [, string iv])

 The first prototype is when linked against libmcrypt 2.2.x, the second when linked against libmcrypt 2.4.x.

 Mcrypt_ecb() encrypts or decrypts (depending on mode) the data with cipher and key in ECB cipher mode and returns the resulting string.

 Cipher is one of the MCRYPT_ciphername constants.

 Key is the key supplied to the algorithm. It must be kept secret.

 Data is the data which shall be encrypted/decrypted.

 Mode is MCRYPT_ENCRYPT or MCRYPT_DECRYPT.

 See also: mcrypt_cbc(), mcrypt_cfb(), and mcrypt_ofb().

mcrypt_ofb (PHP3 >= 3.0.8, PHP4)

Encrypt/decrypt data in OFB mode

string mcrypt_ofb (int cipher, string key, string data, int mode, string iv)

string mcrypt_ofb (string cipher, string key, string data, int mode [, string iv])

 The first prototype is when linked against libmcrypt 2.2.x, the second when linked against libmcrypt 2.4.x.

 Mcrypt_ofb() encrypts or decrypts (depending on mode) the data with cipher and key in OFB cipher mode and returns the resulting string.

 Cipher is one of the MCRYPT_ciphername constants.

 Key is the key supplied to the algorithm. It must be kept secret.

 Data is the data which shall be encrypted/decrypted.

 Mode is MCRYPT_ENCRYPT or MCRYPT_DECRYPT.

 IV is the initialization vector.

 See also: mcrypt_cbc(), mcrypt_cfb(), and mcrypt_ecb().

mcrypt_list_algorithms (PHP4 CVS only)

Get an array of all supported ciphers

array mcrypt_list_algorithms ([string lib_dir])

 Mcrypt_list_algorithms() is used to get an array of all supported algorithms in the

 lib_dir. Mcrypt_list_algorithms() takes as optional parameter a directory which specifies the directory where all algorithms are located. If not specifies, the value of the mcrypt.algorithms_dir php.ini directive is used.

Example 1. Mcrypt_list_algorithms() Example

<?php

$algorithms = mcrypt_list_algorithms ("/usr/local/lib/libmcrypt");

foreach ($algorithms as $cipher) {

 echo $cipher."/n";

}

?>

 The above example will produce a list with all supported algorithms in the "/usr/local/lib/libmcrypt" directory.

mcrypt_list_modes (PHP4 CVS only)

Get an array of all supported modes

array mcrypt_list_modes ([string lib_dir])

 Mcrypt_list_modes() is used to get an array of all supported modes in the lib_dir.

 Mcrypt_list_modes() takes as optional parameter a directory which specifies the directory where all modes are located. If not specifies, the value of the mcrypt.modes_dir php.ini directive is used.

Example 1. Mcrypt_list_modes() Example

<?php

$modes = mcrypt_list_modes ();

foreach ($modes as $mode) {

 echo $mode."/n";

}

?>

 The above example will produce a list with all supported algorithms in the default mode directory. If it is not set with the ini directive mcrypt.modes_dir, the default directory of mcrypt is used (which is /usr/local/lib/libmcrypt).

mcrypt_get_iv_size (PHP4 CVS only)

Returns the size of the IV belonging to a specific cipher/mode combination

int mcrypt_get_iv_size (string cipher, string mode)

 Mcrypt_get_iv_size() returns the size of the Initialisation Vector (IV). On error the function returns FALSE. If the IV is ignored in the specified cipher/mode combination zero is returned.

 Cipher is one of the MCRYPT_ciphername constants of the name of the algorithm as string.

 Mode is one of the MCRYPT_MODE_modename constants of one of "ecb", "cbc", "cfb", "ofb", "nofb" or "stream".

mcrypt_encrypt (PHP4 CVS only)

Encrypts plaintext with given parameters

string mcrypt_encrypt (string cipher, string key, string data, string mode [, string iv])

 Mcrypt_encrypt() encrypts the data and returns the encrypted data.

 Cipher is one of the MCRYPT_ciphername constants of the name of the algorithm as string.

 Key is the key with which the data will be encrypted. If it's smaller that the required keysize, it is padded with '\0'.

 Data is the data that will be encrypted with the given cipher and mode. If the size of the data is not n * blocksize, the data will be padded with '\0'. The returned crypttext can be larger that the size of the data that is given by data.

 Mode is one of the MCRYPT_MODE_modename constants of one of "ecb", "cbc", "cfb", "ofb", "nofb" or "stream".

 The IV parameter is used for the initialisation in CBC, CFB, OFB modes, and in some algorithms in STREAM mode. If you do not supply an IV, while it is needed for an algorithm, the function issues a warning and uses an IV with all bytes set to '\0'.

Example 1. Mcrypt_encrypt() Example

<?php

$iv = mcrypt_create_iv (mcrypt_get_iv_size (MCRYPT_RIJNDAEL_256, MCRYPT_MODE_ECB), MCRYPT_RAND);

$key = "This is a very secret key";

$text = "Meet me at 11 o'clock behind the monument.";

echo strlen ($text)."\n";

$crypttext = mcrypt_encrypt (MCRYPT_RIJNDAEL_256, $key, $text, MCRYPT_MODE_ECB, $iv);

echo strlen ($crypttext)."\n";

?>

 The above example will print out:

42

64

mcrypt_decrypt (PHP4 CVS only)

Decrypts crypttext with given parameters

string mcrypt_decrypt (string cipher, string key, string data, string mode [, string iv])

 Mcrypt_decrypt() decrypts the data and returns the unencrypted data.

 Cipher is one of the MCRYPT_ciphername constants of the name of the algorithm as string.

 Key is the key with which the data is encrypted. If it's smaller that the required keysize, it is padded with '\0'.

 Data is the data that will be decrypted with the given cipher and mode. If the size of the data is not n * blocksize, the data will be padded with '\0'.

 Mode is one of the MCRYPT_MODE_modename constants of one of "ecb", "cbc", "cfb", "ofb", "nofb" or "stream".

 The IV parameter is used for the initialisation in CBC, CFB, OFB modes, and in some algorithms in STREAM mode. If you do not supply an IV, while it is needed for an algorithm, the function issues a warning and uses an IV with all bytes set to '\0'.

mcrypt_module_open (PHP4 CVS only)

This function opens the module of the algorithm and the mode to be used

resource mcrypt_module_open (string algorithm, string algorithm_directory, string mode, string mode_directory)

 This function opens the module of the algorithm and the mode to be used. The name of the algorithm is specified in algorithm, eg "twofish" or is one of the MCRYPT_ciphername constants. The library is closed by calling mcrypt_module_close(), but there is no need to call that function if mcrypt_generic_end() is called. Normally it returns an encryption descriptor, or FALSE on error.

 The algorithm_directory and mode_directory are used to locate the encryption modules. When you supply a directory name, it is used. When you set one of these to the empty string (""), the value set by the mcrypt.algorithms_dir or mcrypt.modes_dir ini-directive is used. When these are not set, the default directory are used that are compiled in into libmcrypt (usally /usr/local/lib/libmcrypt).

Example 1. Mcrypt_module_open() Example

<?php

$td = mcrypt_module_open (MCRYPT_DES, "", MCRYPT_MODE_ECB, "/usr/lib/mcrypt-modes");

?>

 The above example will try to open the DES cipher from the default directory and the EBC mode from the directory /usr/lib/mcrypt-modes.

mcrypt_generic_init (PHP4 CVS only)

This function initializes all buffers needed for encryption

int mcrypt_generic_init (resource td, string key, string iv)

 The maximum length of the key should be the one obtained by calling mcrypt_enc_get_key_size() and every value smaller than this is legal. The IV should normally have the size of the algorithms block size, but you must obtain the size by calling mcrypt_enc_get_iv_size(). IV is ignored in ECB. IV MUST exist in CFB, CBC, STREAM, nOFB and OFB modes. It needs to be random and unique (but not secret). The same IV must be used for encryption/decryption. If you do not want to use it you should set it to zeros, but this is not recommended. The function returns (-1) on error.

 You need to call this function before every mcrypt_generic() or mdecrypt_generic().

mcrypt_generic (PHP4 CVS only)

This function encrypts data

string mcrypt_generic (resource td, string data)

 This function encrypts data. The data is padded with "\0" to make sure the length of the data is n * blocksize. This function returns the encrypted data. Note that the length of the returned string can in fact be longer then the input, due to the padding of the data.

mdecrypt_generic (PHP4 CVS only)

This function decrypts data

string mdecrypt_generic (resource td, string data)

 This function decrypts data. Note that the length of the returned string can in fact be longer then the unencrypted string, due to the padding of the data.

Example 1. Mdecrypt_generic() Example

<?php

$iv_size = mcrypt_enc_get_iv_size ($td));

$iv = @mcrypt_create_iv ($iv_size, MCRYPT_RAND);

if (@mcrypt_generic_init ($td, $key, $iv) != -1)

{

 $c_t = mcrypt_generic ($td, $plain_text);

 @mcrypt_generic_init ($td, $key, $iv);

 $p_t = mdecrypt_generic ($td, $c_t);

}

if (strncmp ($p_t, $plain_text, strlen($plain_text)) == 0)

 echo "ok";

else

 echo "error";

?>

 The above example shows how to check if the data before the encryption is the same as the data after the decryption.

mcrypt_generic_end (PHP4 CVS only)

This function terminates encryption

bool mcrypt_generic_end (resource td)

 This function terminates encryption specified by the encryption descriptor (td). Actually it clears all buffers, and closes all the modules used. Returns FALSE on error, or TRUE on succes.

mcrypt_enc_self_test (PHP4 CVS only)

This function runs a self test on the opened module

int mcrypt_enc_self_test (resource td)

 This function runs the self test on the algorithm specified by the descriptor td. If the self test succeeds it returns zero. In case of an error, it returns 1.

mcrypt_enc_is_block_algorithm_mode (PHP4 CVS only)

Checks whether the encryption of the opened mode works on blocks

int mcrypt_enc_is_block_algorithm_mode (resource td)

 This function returns 1 if the mode is for use with block algorithms, otherwise it returns 0. (eg. 0 for stream, and 1 for cbc, cfb, ofb).

mcrypt_enc_is_block_algorithm (PHP4 CVS only)

Checks whether the algorithm of the opened mode is a block algorithm

int mcrypt_enc_is_block_algorithm (resource td)

 This function returns 1 if the algorithm is a block algorithm, or 0 if it is a stream algorithm.

mcrypt_enc_is_block_mode (PHP4 CVS only)

Checks whether the opened mode outputs blocks

int mcrypt_enc_is_block_mode (resource td)

 This function returns 1 if the mode outputs blocks of bytes or 0 if it outputs bytes. (eg. 1 for cbc and ecb, and 0 for cfb and stream).

mcrypt_enc_get_block_size (PHP4 CVS only)

Returns the blocksize of the opened algorithm

int mcrypt_enc_get_block_size (resource td)

 This function returns the block size of the algorithm specified by the encryption descriptor td in bytes.

mcrypt_enc_get_key_size (PHP4 CVS only)

Returns the maximum supported keysize of the opened mode

int mcrypt_enc_get_key_size (resource td)

 This function returns the maximum supported key size of the algorithm specified by the encryption descriptor td in bytes.

mcrypt_enc_get_supported_key_sizes (PHP4 CVS only)

Returns an array with the supported keysizes of the opened algorithm

array mcrypt_enc_get_supported_key_sizes (resource td)

 Returns an array with the key sizes supported by the algorithm specified by the encryption descriptor. If it returns an empty array then all key sizes between 1 and mcrypt_enc_get_key_size() are supported by the algorithm.

mcrypt_enc_get_iv_size (PHP4 CVS only)

Returns the size of the IV of the opened algorithm

int mcrypt_enc_get_iv_size (resource td)

 This function returns the size of the iv of the algorithm specified by the encryption descriptor in bytes. If it returns '0' then the IV is ignored in the algorithm. An IV is used in cbc, cfb and ofb modes, and in some algorithms in stream mode.

mcrypt_enc_get_algorithms_name (PHP4 CVS only)

Returns the name of the opened algorithm

string mcrypt_enc_get_algorithms_name (resource td)

 This function returns the name of the algorithm.

mcrypt_enc_get_modes_name (PHP4 CVS only)

Returns the name of the opened mode

string mcrypt_enc_get_modes_name (resource td)

 This function returns the name of the mode.

mcrypt_module_self_test (PHP4 CVS only)

This function runs a self test on the specified module

bool mcrypt_module_self_test (string algorithm [, string lib_dir])

 This function runs the self test on the algorithm specified. The optional lib_dir parameter can contain the location of where the algorithm module is on the system.

 The function returns TRUE if the self test succeeds, or FALSE when if fails.

mcrypt_module_is_block_algorithm_mode (PHP4 CVS only)

This function returns if the the specified module is a block algorithm or not

bool mcrypt_module_is_block_algorithm_mode (string mode [, string lib_dir])

 This function returns TRUE if the mode is for use with block algorithms, otherwise it returns 0. (eg. 0 for stream, and 1 for cbc, cfb, ofb). The optional lib_dir parameter can contain the location where the mode module is on the system.

mcrypt_module_is_block_algorithm (PHP4 CVS only)

This function checks whether the specified algorithm is a block algorithm

bool mcrypt_module_is_block_algorithm (string algorithm [, string lib_dir])

 This function returns TRUE if the specified algorithm is a block algorithm, or FALSE is it is a stream algorithm. The optional lib_dir parameter can contain the location where the algorithm module is on the system.

mcrypt_module_is_block_mode (PHP4 CVS only)

This function returns if the the specified mode outputs blocks or not

bool mcrypt_module_is_block_mode (string mode [, string lib_dir])

 This function returns TRUE if the mode outputs blocks of bytes or FALSE if it outputs just bytes. (eg. 1 for cbc and ecb, and 0 for cfb and stream). The optional lib_dir parameter can contain the location where the mode module is on the system.

mcrypt_module_get_algo_block_size (PHP4 CVS only)

Returns the blocksize of the specified algorithm

int mcrypt_module_get_algo_block_size (string algorithm [, string lib_dir])

 This function returns the block size of the algorithm specified in bytes. The optional lib_dir parameter can contain the location where the mode module is on the system.

mcrypt_module_get_algo_key_size (PHP4 CVS only)

Returns the maximum supported keysize of the opened mode

int mcrypt_module_get_algo_key_size (string algorithm [, string lib_dir])

 This function returns the maximum supported key size of the algorithm specified in bytes. The optional lib_dir parameter can contain the location where the mode module is on the system.

mcrypt_module_get_algo_supported_key_sizes (unknown)

Returns an array with the supported keysizes of the opened algorithm

array mcrypt_module_enc_get_algo_supported_key_sizes (string algorithm [, string lib_dir])

 Returns an array with the key sizes supported by the specified algorithm. If it returns an empty array then all key sizes between 1 and mcrypt_module_get_algo_key_size() are supported by the algorithm. The optional lib_dir parameter can contain the location where the mode module is on the system.

XXXVI. Mhash Functions

 These functions are intended to work with mhash (http://mhash.sourceforge.net/).

 This is an interface to the mhash library. mhash supports a wide variety of hash algorithms such as MD5, SHA1, GOST, and many others.

 To use it, download the mhash distribution from its web site (http://mhash.sourceforge.net/) and follow the included installation instructions. You need to compile PHP with the --with-mhash parameter to enable this extension.

 Mhash can be used to create checksums, message digests, and more.

Example 1. Compute the SHA1 key and print it out as hex

<?php

$input = "Let us meet at 9 o' clock at the secret place.";

$hash = mhash (MHASH_SHA1, $input);

print "The hash is ".bin2hex ($hash)."\n";

?>

 This will produce:

The hash is d3b85d710d8f6e4e5efd4d5e67d041f9cecedafe

 For a complete list of supported hashes, refer to the documentation of mhash. The general rule is that you can access the hash algorithm from PHP with MHASH_HASHNAME. For example, to access HAVAL you use the PHP constant MHASH_HAVAL.

 Here is a list of hashes which are currently supported by mhash. If a hash is not listed here, but is listed by mhash as supported, you can safely assume that this documentation is outdated.

•
 MHASH_MD5

•
 MHASH_SHA1

•
 MHASH_HAVAL

•
 MHASH_RIPEMD160

•
 MHASH_RIPEMD128

•
 MHASH_SNEFRU

•
 MHASH_TIGER

•
 MHASH_GOST

•
 MHASH_CRC32

•
 MHASH_CRC32B

mhash_get_hash_name (PHP3 >= 3.0.9, PHP4)

Get the name of the specified hash

string mhash_get_hash_name (int hash)

 Mhash_get_hash_name() is used to get the name of the specified hash.

 mhash_get_hash_name() takes the hash id as an argument and returns the name of the hash or false, if the hash does not exist.

Example 1. Mhash_get_hash_name() Example

<?php

$hash = MHASH_MD5;

print mhash_get_hash_name ($hash);

?>

 The above example will print out:

MD5

mhash_get_block_size (PHP3 >= 3.0.9, PHP4)

Get the block size of the specified hash

int mhash_get_block_size (int hash)

 Mhash_get_block_size() is used to get the size of a block of the specified hash.

 Mhash_get_block_size() takes one argument, the hash and returns the size in bytes or false, if the hash does not exist.

mhash_count (PHP3 >= 3.0.9, PHP4)

Get the highest available hash id

int mhash_count (void)

 Mhash_count() returns the highest available hash id. Hashes are numbered from 0 to this hash id.

Example 1. Traversing all hashes

<?php

$nr = mhash_count();

for ($i = 0; $i <= $nr; $i++) {

 echo sprintf ("The blocksize of %s is %d\n",

 mhash_get_hash_name ($i),

 mhash_get_block_size ($i));

}

?>

mhash (PHP3 >= 3.0.9, PHP4)

Compute hash

string mhash (int hash, string data)

 Mhash() applies a hash function specified by hash to the data and returns the resulting hash (also called digest).

XXXVII. Microsoft SQL Server functions

mssql_close (PHP3 , PHP4)

Close MS SQL Server connection

int mssql_close ([int link_identifier])

 Returns: true on success, false on error.

 Mssql_close() closes the link to a MS SQL Server database that's associated with the specified link identifier. If the link identifier isn't specified, the last opened link is assumed.

 Note that this isn't usually necessary, as non-persistent open links are automatically closed at the end of the script's execution.

 Mssql_close() will not close persistent links generated by mssql_pconnect().

 See also: mssql_connect(), mssql_pconnect().

mssql_connect (PHP3 , PHP4)

Open MS SQL server connection

int mssql_connect ([string servername [, string username [, string password]]])

 Returns: A positive MS SQL link identifier on success, or false on error.

 Mssql_connect() establishes a connection to a MS SQL server. The servername argument has to be a valid servername that is defined in the 'interfaces' file.

 In case a second call is made to mssql_connect() with the same arguments, no new link will be established, but instead, the link identifier of the already opened link will be returned.

 The link to the server will be closed as soon as the execution of the script ends, unless it's closed earlier by explicitly calling mssql_close().

 See also mssql_pconnect(), mssql_close().

mssql_data_seek (PHP3 , PHP4)

Move internal row pointer

int mssql_data_seek (int result_identifier, int row_number)

 Returns: true on success, false on failure.

 Mssql_data_seek() moves the internal row pointer of the MS SQL result associated with the specified result identifier to point to the specified row number. The next call to mssql_fetch_row() would return that row.

 See also: mssql_data_seek().

mssql_fetch_array (PHP3 , PHP4)

Fetch row as array

int mssql_fetch_array (int result)

 Returns: An array that corresponds to the fetched row, or false if there are no more rows.

 Mssql_fetch_array() is an extended version of mssql_fetch_row(). In addition to storing the data in the numeric indices of the result array, it also stores the data in associative indices, using the field names as keys.

 An important thing to note is that using mssql_fetch_array() is NOT significantly slower than using mssql_fetch_row(), while it provides a significant added value.

 For further details, also see mssql_fetch_row().

mssql_fetch_field (PHP3 , PHP4)

Get field information

object mssql_fetch_field (int result [, int field_offset])

 Returns an object containing field information.

 Mssql_fetch_field() can be used in order to obtain information about fields in a certain query result. If the field offset isn't specified, the next field that wasn't yet retrieved by mssql_fetch_field() is retrieved.

 The properties of the object are:

•
 name - column name. if the column is a result of a function, this property is set to computed#N, where #N is a serial number.

•
 column_source - the table from which the column was taken

•
 max_length - maximum length of the column

•
 numeric - 1 if the column is numeric

 See also mssql_field_seek().

mssql_fetch_object (PHP3 , PHP4)

Fetch row as object

int mssql_fetch_object (int result)

 Returns: An object with properties that correspond to the fetched row, or false if there are no more rows.

 Mssql_fetch_object() is similar to mssql_fetch_array(), with one difference - an object is returned, instead of an array. Indirectly, that means that you can only access the data by the field names, and not by their offsets (numbers are illegal property names).

 Speed-wise, the function is identical to mssql_fetch_array(), and almost as quick as mssql_fetch_row() (the difference is insignificant).

 See also: mssql_fetch-array() and mssql_fetch-row().

mssql_fetch_row (PHP3 , PHP4)

Get row as enumerated array

array mssql_fetch_row (int result)

 Returns: An array that corresponds to the fetched row, or false if there are no more rows.

 Mssql_fetch_row() fetches one row of data from the result associated with the specified result identifier. The row is returned as an array. Each result column is stored in an array offset, starting at offset 0.

 Subsequent call to mssql_fetch_rows() would return the next row in the result set, or false if there are no more rows.

 See also: mssql_fetch_array(), mssql_fetch_object(), mssql_data_seek(), mssql_fetch_lengths(), and mssql_result().

mssql_field_length (PHP3 >= 3.0.3, PHP4 >= 4.0b4)

Get the length of a field

int mssql_field_length (int result [, int offset])

mssql_field_name (PHP3 >= 3.0.3, PHP4 >= 4.0b4)

Get the name of a field

int mssql_field_name (int result [, int offset])

mssql_field_seek (PHP3 , PHP4)

Set field offset

int mssql_field_seek (int result, int field_offset)

 Seeks to the specified field offset. If the next call to mssql_fetch_field() won't include a field offset, this field would be returned.

 See also: mssql_fetch_field().

mssql_field_type (PHP3 >= 3.0.3, PHP4 >= 4.0b4)

Get the type of a field

string mssql_field_type (int result [, int offset])

mssql_free_result (PHP3 , PHP4)

Free result memory

int mssql_free_result (int result)

 mssql_free_result() only needs to be called if you are worried about using too much memory while your script is running. All result memory will automatically be freed when the script ends. You may call mssql_free_result() with the result identifier as an argument and the associated result memory will be freed.

mssql_get_last_message (PHP3 , PHP4)

 Returns the last message from server (over min_message_severity?)

string mssql_get_last_message (void)

mssql_min_error_severity (PHP3 , PHP4)

Sets the lower error severity

void mssql_min_error_severity (int severity)

mssql_min_message_severity (PHP3 , PHP4)

Sets the lower message severity

void mssql_min_message_severity (int severity)

mssql_num_fields (PHP3 , PHP4)

Get number of fields in result

int mssql_num_fields (int result)

 Mssql_num_fields() returns the number of fields in a result set.

 See also: mssql_db_query(), mssql_query(), mssql_fetch_field(), and mssql_num_rows().

mssql_num_rows (PHP3 , PHP4)

Get number of rows in result

int mssql_num_rows (string result)

 Mssql_num_rows() returns the number of rows in a result set.

 See also: mssql_db_query(), mssql_query(), and mssql_fetch_row().

mssql_pconnect (PHP3 , PHP4)

Open persistent MS SQL connection

int mssql_pconnect ([string servername [, string username [, string password]]])

 Returns: A positive MS SQL persistent link identifier on success, or false on error.

 Mssql_pconnect() acts very much like mssql_connect() with two major differences.

 First, when connecting, the function would first try to find a (persistent) link that's already open with the same host, username and password. If one is found, an identifier for it will be returned instead of opening a new connection.

 Second, the connection to the SQL server will not be closed when the execution of the script ends. Instead, the link will remain open for future use (mssql_close() will not close links established by mssql_pconnect()).

 This type of links is therefore called 'persistent'.

mssql_query (PHP3 , PHP4)

Send MS SQL query

int mssql_query (string query [, int link_identifier])

 Returns: A positive MS SQL result identifier on success, or false on error.

 Mssql_query() sends a query to the currently active database on the server that's associated with the specified link identifier. If the link identifier isn't specified, the last opened link is assumed. If no link is open, the function tries to establish a link as if mssql_connect() was called, and use it.

 See also: mssql_db_query(), mssql_select_db(), and mssql_connect().

mssql_result (PHP3 , PHP4)

Get result data

int mssql_result (int result, int i, mixed field)

 Mssql_result() returns the contents of one cell from a MS SQL result set. The field argument can be the field's offset, the field's name or the field's table dot field's name (tablename.fieldname). If the column name has been aliased ('select foo as bar from...'), it uses the alias instead of the column name.

 When working on large result sets, you should consider using one of the functions that fetch an entire row (specified below). As these functions return the contents of multiple cells in one function call, they're MUCH quicker than mssql_result(). Also, note that specifying a numeric offset for the field argument is much quicker than specifying a fieldname or tablename.fieldname argument.

 Recommended high-performance alternatives: mssql_fetch_row(), mssql_fetch_array(), and mssql_fetch_object().

mssql_select_db (PHP3 , PHP4)

Select MS SQL database

int mssql_select_db (string database_name [, int link_identifier])

 Returns: true on success, false on error

 Mssql_select_db() sets the current active database on the server that's associated with the specified link identifier. If no link identifier is specified, the last opened link is assumed. If no link is open, the function will try to establish a link as if mssql_connect() was called, and use it.

 Every subsequent call to mssql_query() will be made on the active database.

 See also: mssql_connect(), mssql_pconnect(), and mssql_query()

XXXVIII. Miscellaneous functions

 These functions were placed here because none of the other categories seemed to fit.

connection_aborted (PHP3 >= 3.0.7, PHP4 >= 4.0b4)

Returns true if client disconnected

int connection_aborted (void)

 Returns true if client disconnected. See the Connection Handling description in the Features chapter for a complete explanation.

connection_status (PHP3 >= 3.0.7, PHP4 >= 4.0b4)

Returns connection status bitfield

int connection_status (void)

 Returns the connection status bitfield. See the Connection Handling description in the Features chapter for a complete explanation.

connection_timeout (PHP3 >= 3.0.7, PHP4 >= 4.0b4)

Return true if script timed out

int connection_timeout (void)

 Returns true if script timed out. See the Connection Handling description in the Features chapter for a complete explanation.

define (PHP3 , PHP4)

Defines a named constant.

int define (string name, mixed value [, int case_insensitive])

 Defines a named constant, which is similar to a variable except:

•
 Constants do not have a dollar sign '$' before them;

•
 Constants may be accessed anywhere without regard to variable scoping rules;

•
 Constants may not be redefined or undefined once they have been set; and

•
 Constants may only evaluate to scalar values.

 The name of the constant is given by name; the value is given by value.

 The optional third parameter case_insensitive is also available. If the value 1 is given, then the constant will be defined case-insensitive. The default behaviour is case-sensitive; i.e. CONSTANT and Constant represent different values.

Example 1. Defining Constants

<?php

define ("CONSTANT", "Hello world.");

echo CONSTANT; // outputs "Hello world."

?>

 Define() returns TRUE on success and FALSE if an error occurs.

 See also defined() and the section on Constants.

defined (PHP3 , PHP4)

 Checks whether a given named constant exists

int defined (string name)

 Returns true if the named constant given by name has been defined, false otherwise.

 See also define() and the section on Constants.

die (unknown)

 Output a message and terminate the current script

void die (string message)

 This language construct outputs a message and terminates parsing of the script. It does not return anything.

Example 1. die example

<?php

$filename = '/path/to/data-file';

$file = fopen ($filename, 'r')

 or die("unable to open file ($filename)");

?>

 See also exit().

eval (unknown)

Evaluate a string as PHP code

mixed eval (string code_str)

 eval() evaluates the string given in code_str as PHP code. Among other things, this can be useful for storing code in a database text field for later execution.

 There are some factors to keep in mind when using eval(). Remember that the string passed must be valid PHP code, including things like terminating statements with a semicolon so the parser doesn't die on the line after the eval(), and properly escaping things in code_str.

 Also remember that variables given values under eval() will retain these values in the main script afterwards.

 A return statement will terminate the evaluation of the string immediatley. In PHP4 you may use return to return a value that will become the result of the eval() function while in PHP3 eval() was of type void and did never return anything.

Example 1. Eval() example - simple text merge

<?php

$string = 'cup';

$name = 'coffee';

$str = 'This is a $string with my $name in it.
';

echo $str;

eval ("\$str = \"$str\";");

echo $str;

?>

 The above example will show:

This is a $string with my $name in it.

This is a cup with my coffee in it.

exit (unknown)

Terminate current script

void exit(void);

 This language construct terminates parsing of the script. It does not return.

 See also die().

func_get_arg (PHP4 >= 4.0b4)

Return an item from the argument list

int func_get_arg (int arg_num)

 Returns the argument which is at the arg_num'th offset into a user-defined function's argument list. Function arguments are counted starting from zero. Func_get_arg() will generate a warning if called from outside of a function definition.

 If arg_num is greater than the number of arguments actually passed, a warning will be generated and func_get_arg() will return FALSE.

<?php

function foo() {

 $numargs = func_num_args();

 echo "Number of arguments: $numargs
\n";

 if ($numargs >= 2) {

 echo "Second argument is: " . func_get_arg (1) . "
\n";

 }

}

foo (1, 2, 3);

?>

 Func_get_arg() may be used in conjunction with func_num_args() and func_get_args() to allow user-defined functions to accept variable-length argument lists.

Note: This function was added in PHP 4.

func_get_args (PHP4 >= 4.0b4)

 Returns an array comprising a function's argument list

int func_get_args (void)

 Returns an array in which each element is the corresponding member of the current user-defined function's argument list. Func_get_args() will generate a warning if called from outside of a function definition.

<?php

function foo() {

 $numargs = func_num_args();

 echo "Number of arguments: $numargs
\n";

 if ($numargs >= 2) {

 echo "Second argument is: " . func_get_arg (1) . "
\n";

 }

 $arg_list = func_get_args();

 for ($i = 0; $i < $numargs; $i++) {

 echo "Argument $i is: " . $arg_list[$i] . "
\n";

 }

}

foo (1, 2, 3);

?>

 Func_get_args() may be used in conjunction with func_num_args() and func_get_arg() to allow user-defined functions to accept variable-length argument lists.

Note: This function was added in PHP 4.

func_num_args (PHP4 >= 4.0b4)

 Returns the number of arguments passed to the function

int func_num_args (void)

 Returns the number of arguments passed into the current user-defined function. Func_num_args() will generate a warning if called from outside of a function definition.

<?php

function foo() {

 $numargs = func_num_args();

 echo "Number of arguments: $numargs\n";

}

foo (1, 2, 3); // Prints 'Number of arguments: 3'

?>

 Func_num_args() may be used in conjunction with func_get_arg() and func_get_args() to allow user-defined functions to accept variable-length argument lists.

Note: This function was added in PHP 4.

function_exists (PHP3 >= 3.0.7, PHP4)

 Return true if the given function has been defined

int function_exists (string function_name)

 Checks the list of defined functions for function_name. Returns true if the given function name was found, false otherwise.

get_browser (PHP3 , PHP4)

 Tells what the user's browser is capable of

object get_browser ([string user_agent])

 get_browser() attempts to determine the capabilities of the user's browser. This is done by looking up the browser's information in the browscap.ini file. By default, the value of $HTTP_USER_AGENT is used; however, you can alter this (i.e., look up another browser's info) by passing the optional user_agent parameter to get_browser().

 The information is returned in an object, which will contain various data elements representing, for instance, the browser's major and minor version numbers and ID string; true/false values for features such as frames, JavaScript, and cookies; and so forth.

 While browscap.ini contains information on many browsers, it relies on user updates to keep the database current. The format of the file is fairly self-explanatory.

 The following example shows how one might list all available information retrieved about the user's browser.

Example 1. Get_browser() example

<?php

function list_array ($array) {

 while (list ($key, $value) = each ($array)) {

 $str .= "$key: $value
\n";

 }

 return $str;

}

echo "$HTTP_USER_AGENT<hr>\n";

$browser = get_browser();

echo list_array ((array) $browser);

?>

 The output of the above script would look something like this:

Mozilla/4.5 [en] (X11; U; Linux 2.2.9 i586)<hr>

browser_name_pattern: Mozilla/4\.5.*

parent: Netscape 4.0

platform: Unknown

majorver: 4

minorver: 5

browser: Netscape

version: 4

frames: 1

tables: 1

cookies: 1

backgroundsounds:

vbscript:

javascript: 1

javaapplets: 1

activexcontrols:

beta:

crawler:

authenticodeupdate:

msn:

 In order for this to work, your browscap configuration file setting must point to the correct location of the browscap.ini file.

 For more information (including locations from which you may obtain a browscap.ini file), check the PHP FAQ at http://www.php.net/FAQ.php.

ignore_user_abort (PHP3 >= 3.0.7, PHP4 >= 4.0b4)

 Set whether a client disconnect should abort script execution

int ignore_user_abort ([int setting])

 This function sets whether a client disconnect should cause a script to be aborted. It will return the previous setting and can be called without an argument to not change the current setting and only return the current setting. See the Connection Handling section in the Features chapter for a complete description of connection handling in PHP.

iptcparse (PHP3 >= 3.0.6, PHP4)

 Parse a binary IPTC http://www.xe.net/iptc/ block into single tags.

array iptcparse (string iptcblock)

 This function parses a binary IPTC block into its single tags. It returns an array using the tagmarker as an index and the value as the value. It returns false on error or if no IPTC data was found. See GetImageSize() for a sample.

leak (PHP3 , PHP4)

Leak memory

void leak (int bytes)

 Leak() leaks the specified amount of memory.

 This is useful when debugging the memory manager, which automatically cleans up "leaked" memory when each request is completed.

pack (PHP3 , PHP4)

Pack data into binary string.

string pack (string format [, mixed args ...])

 Pack given arguments into binary string according to format. Returns binary string containing data.

 The idea to this function was taken from Perl and all formatting codes work the same as there, however, there are some formatting codes that are missing such as Perl's "u" format code. The format string consists of format codes followed by an optional repeater argument. The repeater argument can be either an integer value or * for repeating to the end of the input data. For a, A, h, H the repeat count specifies how many characters of one data argument are taken, for @ it is the absolute position where to put the next data, for everything else the repeat count specifies how many data arguments are consumed and packed into the resulting binary string. Currently implemented are

•
 a NUL-padded string

•
 A SPACE-padded string

•
 h Hex string, low nibble first

•
 H Hex string, high nibble first

•
 c signed char

•
 C unsigned char

•
 s signed short (always 16 bit, machine byte order)

•
 S unsigned short (always 16 bit, machine byte order)

•
 n unsigned short (always 16 bit, big endian byte order)

•
 v unsigned short (always 16 bit, little endian byte order)

•
 i signed integer (machine dependent size and byte order)

•
 I unsigned integer (machine dependent size and byte order)

•
 l signed long (always 32 bit, machine byte order)

•
 L unsigned long (always 32 bit, machine byte order)

•
 N unsigned long (always 32 bit, big endian byte order)

•
 V unsigned long (always 32 bit, little endian byte order)

•
 f float (machine dependent size and representation)

•
 d double (machine dependent size and representation)

•
 x NUL byte

•
 X Back up one byte

•
 @ NUL-fill to absolute position

Example 1. Pack() format string

$binarydata = pack ("nvc*", 0x1234, 0x5678, 65, 66);

 The resulting binary string will be 6 bytes long and contain the byte sequence 0x12, 0x34, 0x78, 0x56, 0x41, 0x42.

 Note that the distinction between signed and unsigned values only affects the function unpack(), where as function pack() gives the same result for signed and unsigned format codes.

 Also note that PHP internally stores integral values as signed values of a machine dependent size. If you give it an unsigned integral value too large to be stored that way it is converted to a double which often yields an undesired result.

register_shutdown_function (PHP3 >= 3.0.4, PHP4)

 Register a function for execution on shutdown

int register_shutdown_function (string func)

 Registers the function named by func to be executed when script processing is complete.

 Common Pitfalls:

 Since no output is allowed to the browser in this function, you will be unable to debug it using statements such as print or echo.

serialize (PHP3 >= 3.0.5, PHP4)

 Generates a storable representation of a value

string serialize (mixed value)

 Serialize() returns a string containing a byte-stream representation of value that can be stored anywhere.

 This is useful for storing or passing PHP values around without losing their type and structure.

 To make the serialized string into a PHP value again, use unserialize(). Serialize() handles the types integer, double, string, array (multidimensional) and object (object properties will be serialized, but methods are lost).

Example 1. Serialize() example

// $session_data contains a multi-dimensional array with session

// information for the current user. We use serialize() to store

// it in a database at the end of the request.

$conn = odbc_connect ("webdb", "php", "chicken");

$stmt = odbc_prepare ($conn,

 "UPDATE sessions SET data = ? WHERE id = ?");

$sqldata = array (serialize($session_data), $PHP_AUTH_USER);

if (!odbc_execute ($stmt, &$sqldata)) {

 $stmt = odbc_prepare($conn,

 "INSERT INTO sessions (id, data) VALUES(?, ?)");

 if (!odbc_execute($stmt, &$sqldata)) {

 /* Something went wrong. Bitch, whine and moan. */

 }

}

sleep (PHP3 , PHP4)

Delay execution

void sleep (int seconds)

 The sleep function delays program execution for the given number of seconds.

 See also usleep().

uniqid (PHP3 , PHP4)

Generate a unique id

int uniqid (string prefix [, boolean lcg])

 Uniqid() returns a prefixed unique identifier based on the current time in microseconds. The prefix can be useful for instance if you generate identifiers simultaneously on several hosts that might happen to generate the identifier at the same microsecond. Prefix can be up to 114 characters long.

 If the optional lcg parameter is true, uniqid() will add additional "combined LCG" entropy at the end of the return value, which should make the results more unique.

 With an empty prefix, the returned string will be 13 characters long. If lcg is true, it will be 23 characters.

Note: The lcg parameter is only available in PHP 4 and PHP 3.0.13 and later.

 If you need a unique identifier or token and you intend to give out that token to the user via the network (i.e. session cookies), it is recommended that you use something along the lines of

$token = md5 (uniqid ("")); // no random portion

$better_token = md5 (uniqid (rand())); // better, difficult to guess

 This will create a 32 character identifier (a 128 bit hex number) that is extremely difficult to predict.

unpack (PHP3 , PHP4)

Unpack data from binary string

array unpack (string format, string data)

 Unpack() from binary string into array according to format. Returns array containing unpacked elements of binary string.

 Unpack() works slightly different from Perl as the unpacked data is stored in an associative array. To accomplish this you have to name the different format codes and separate them by a slash /.

Example 1. Unpack() format string

$array = unpack ("c2chars/nint", $binarydata);

 The resulting array will contain the entries "chars1", "chars2" and "int".

 For an explanation of the format codes see also: pack()

 Note that PHP internally stores integral values as signed. If you unpack a large unsigned long and it is of the same size as PHP internally stored values the result will be a negative number even though unsigned unpacking was specified.

unserialize (PHP3 >= 3.0.5, PHP4)

 Creates a PHP value from a stored representation

mixed unserialize (string str)

 unserialize() takes a single serialized variable (see serialize()) and converts it back into a PHP value. The converted value is returned, and can be an integer, double, string, array or object. If an object was serialized, its methods are not preserved in the returned value.

Example 1. Unserialize() example

// Here, we use unserialize() to load session data from a database

// into $session_data. This example complements the one described

// with serialize().

$conn = odbc_connect ("webdb", "php", "chicken");

$stmt = odbc_prepare ($conn, "SELECT data FROM sessions WHERE id = ?");

$sqldata = array ($PHP_AUTH_USER);

if (!odbc_execute ($stmt, &$sqldata) || !odbc_fetch_into ($stmt, &$tmp)) {

 // if the execute or fetch fails, initialize to empty array

 $session_data = array();

} else {

 // we should now have the serialized data in $tmp[0].

 $session_data = unserialize ($tmp[0]);

 if (!is_array ($session_data)) {

 // something went wrong, initialize to empty array

 $session_data = array();

 }

}

usleep (PHP3 , PHP4)

Delay execution in microseconds

void usleep (int micro_seconds)

 The sleep() function delays program execution for the given number of micro_seconds.

 See also sleep().

Note: This function does not work on Windows systems.

highlight_string (PHP4)

Syntax highlighting of a string

void highlight_string (string str)

 The highlight_string() function prints out a syntax highlighted version of str using the colors defined in the built-in syntax highlighter for PHP.

 See also highlight_file(), show_source().

highlight_file (PHP4)

Syntax highlighting of a file

void highlight_file (string filename)

 The highlight_file() function prints out a syntax higlighted version of the code contained in filename using the colors defined in the built-in syntax highlighter for PHP.

Example 1. Creating a source highlighting URL

 To setup a URL that can code hightlight any script that you pass to it, we will make use of the "ForceType" directive in Apache to generate a nice URL pattern, and use the function highlight_file() to show a nice looking code list.

 In your httpd.conf you can add the following:

<Location /source>

 ForceType application/x-httpd-php

</Location>

 And then make a file named "source" and put it in your web root directory.

<HTML>

<HEAD>

<TITLE>Source Display</TITLE>

</HEAD>

<BODY BGCOLOR="white">

<?php

 $script = getenv ("PATH_TRANSLATED");

 if(!$script) {

 echo "
ERROR: Script Name needed
";

 } else {

 if (ereg("(\.php|\.inc)$",$script)) {

 echo "<H1>Source of: $PATH_INFO</H1>\n<HR>\n";

 highlight_file($script);

 } else {

 echo "<H1>ERROR: Only PHP or include script names are allowed</H1>";

 }

 }

 echo "<HR>Processed: ".date("Y/M/d H:i:s",time());

?>

</BODY>

</HTML>

 Then you can use an URL like the one below to display a colorized version of a script located in "/path/to/script.php" in your web site.

http://your.server.com/source/path/to/script.php

 See also highlight_string(), show_source().

show_source (PHP4)

Syntax highlighting of a file

void show_source (string filename)

 The show_source() function prints out a syntax higlighted version of the code contained in filename using the colors defined in the built-in syntax highlighter for PHP.

Note: This function is an alias for the function highlight_file()

 See also highlight_string(), highlight_file().

XXXIX. mSQL functions

 These functions allow you to access mSQL database servers. In order to have these functions available, you must compile php with msql support by using the --with-msql[=dir] option. The default location is /usr/local/Hughes.

 More information about mSQL can be found at http://www.hughes.com.au/.

msql (PHP3 , PHP4)

Send mSQL query

int msql (string database, string query, int link_identifier)

 Returns a positive mSQL query identifier to the query result, or false on error.

 msql() selects a database and executes a query on it. If the optional link identifier isn't specified, the function will try to find an open link to the mSQL server and if no such link is found it'll try to create one as if msql_connect() was called with no arguments (see msql_connect()).

msql_affected_rows (PHP3 >= 3.0.6, PHP4)

Returns number of affected rows

int msql_affected_rows (int query_identifier)

 Returns number of affected ("touched") rows by a specific query (i.e. the number of rows returned by a SELECT, the number of rows modified by an update, or the number of rows removed by a delete).

 See also: msql_query().

msql_close (PHP3 , PHP4)

Close mSQL connection

int msql_close (int link_identifier)

 Returns true on success, false on error.

 Msql_close() closes the link to a mSQL database that's associated with the specified link identifier. If the link identifier isn't specified, the last opened link is assumed.

 Note that this isn't usually necessary, as non-persistent open links are automatically closed at the end of the script's execution.

 msql_close() will not close persistent links generated by msql_pconnect().

 See also: msql_connect() and msql_pconnect().

msql_connect (PHP3 , PHP4)

Open mSQL connection

int msql_connect (string hostname)

 Returns a positive mSQL link identifier on success, or false on error.

 Msql_connect() establishes a connection to a mSQL server. The hostname argument is optional, and if it's missing, localhost is assumed.

 In case a second call is made to msql_connect() with the same arguments, no new link will be established, but instead, the link identifier of the already opened link will be returned.

 The link to the server will be closed as soon as the execution of the script ends, unless it's closed earlier by explicitly calling msql_close().

 See also msql_pconnect(), msql_close().

msql_create_db (PHP3 , PHP4)

Create mSQL database

int msql_create_db (string database name [, int link_identifier])

 msql_create_db() attempts to create a new database on the server associated with the specified link identifier.

 See also: msql_drop_db().

msql_createdb (PHP3 , PHP4)

Create mSQL database

int msql_createdb (string database name [, int link_identifier])

 Identical to msql_create_db().

msql_data_seek (PHP3 , PHP4)

Move internal row pointer

int msql_data_seek (int query_identifier, int row_number)

 Returns true on success, false on failure.

 Msql_data_seek() moves the internal row pointer of the mSQL result associated with the specified query identifier to pointer to the specifyed row number. The next call to msql_fetch_row() would return that row.

 See also: msql_fetch_row().

msql_dbname (PHP3 , PHP4)

Get current mSQL database name

string msql_dbname (int query_identifier, int i)

 Msql_dbname() returns the database name stored in position i of the result pointer returned from the msql_listdbs() function. The msql_numrows() function can be used to determine how many database names are available.

msql_drop_db (PHP3 , PHP4)

Drop (delete) mSQL database

int msql_drop_db (string database_name, int link_identifier)

 Returns true on success, false on failure.

 Msql_drop_db() attempts to drop (remove) an entire database from the server associated with the specified link identifier.

 See also: msql_create_db().

msql_dropdb (PHP3 , PHP4)

Drop (delete) mSQL database

 See msql_drop_db().

msql_error (PHP3 , PHP4)

Returns error message of last msql call

string msql_error ()

 Errors coming back from the mSQL database backend no longer issue warnings. Instead, use these functions to retrieve the error string.

msql_fetch_array (PHP3 , PHP4)

Fetch row as array

int msql_fetch_array (int query_identifier [, int result_type])

 Returns an array that corresponds to the fetched row, or false if there are no more rows.

 msql_fetch_array() is an extended version of msql_fetch_row(). In addition to storing the data in the numeric indices of the result array, it also stores the data in associative indices, using the field names as keys.

 The second optional argument result_type in msql_fetch_array() is a constant and can take the following values: MSQL_ASSOC, MSQL_NUM, and MYSQL_BOTH.

 Be careful if you are retrieving results from a query that may return a record that contains only one field that has a value of 0 (or an empty string, or NULL).

 An important thing to note is that using msql_fetch_array() is NOT significantly slower than using msql_fetch_row(), while it provides a significant added value.

 For further details, also see msql_fetch_row().

msql_fetch_field (PHP3 , PHP4)

Get field information

object msql_fetch_field (int query_identifier, int field_offset)

 Returns an object containing field information

 Msql_fetch_field() can be used in order to obtain information about fields in a certain query result. If the field offset isn't specified, the next field that wasn't yet retreived by msql_fetch_field() is retreived.

 The properties of the object are:

•
 name - column name

•
 table - name of the table the column belongs to

•
 not_null - 1 if the column cannot be null

•
 primary_key - 1 if the column is a primary key

•
 unique - 1 if the column is a unique key

•
 type - the type of the column

 See also msql_field_seek().

msql_fetch_object (PHP3 , PHP4)

Fetch row as object

int msql_fetch_object (int query_identifier [, int result_type])

 Returns an object with properties that correspond to the fetched row, or false if there are no more rows.

 msql_fetch_object() is similar to msql_fetch_array(), with one difference - an object is returned, instead of an array. Indirectly, that means that you can only access the data by the field names, and not by their offsets (numbers are illegal property names).

 The optional second argument result_type in msql_fetch_array() is a constant and can take the following values: MSQL_ASSOC, MSQL_NUM, and MSQL_BOTH.

 Speed-wise, the function is identical to msql_fetch_array(), and almost as quick as msql_fetch_row() (the difference is insignificant).

 See also: msql_fetch_array() and msql_fetch_row().

msql_fetch_row (PHP3 , PHP4)

Get row as enumerated array

array msql_fetch_row (int query_identifier)

 Returns an array that corresponds to the fetched row, or false if there are no more rows.

 Msql_fetch_row() fetches one row of data from the result associated with the specified query identifier. The row is returned as an array. Each result column is stored in an array offset, starting at offset 0.

 Subsequent call to msql_fetch_row() would return the next row in the result set, or false if there are no more rows.

 See also: msql_fetch_array(), msql_fetch_object(), msql_data_seek(), and msql_result().

msql_fieldname (PHP3 , PHP4)

Get field name

string msql_fieldname (int query_identifier, int field)

 Msql_fieldname() returns the name of the specified field. query_identifier is the query identifier, and field is the field index. msql_fieldname($result, 2); will return the name of the second field in the result associated with the result identifier.

msql_field_seek (PHP3 , PHP4)

Set field offset

int msql_field_seek (int query_identifier, int field_offset)

 Seeks to the specified field offset. If the next call to msql_fetch_field() won't include a field offset, this field would be returned.

 See also: msql_fetch_field().

msql_fieldtable (PHP3 , PHP4)

Get table name for field

int msql_fieldtable (int query_identifier, int field)

 Returns the name of the table field was fetched from.

msql_fieldtype (PHP3 , PHP4)

Get field type

string msql_fieldtype (int query_identifier, int i)

 Msql_fieldtype() is similar to the msql_fieldname() function. The arguments are identical, but the field type is returned. This will be one of "int", "string" or "real".

msql_fieldflags (PHP3 , PHP4)

Get field flags

string msql_fieldflags (int query_identifier, int i)

 msql_fieldflags() returns the field flags of the specified field. Currently this is either, "not null", "primary key", a combination of the two or "" (an empty string).

msql_fieldlen (PHP3 , PHP4)

Get field length

int msql_fieldlen (int query_identifier, int i)

 Msql_fieldlen() returns the length of the specified field.

msql_free_result (PHP3 , PHP4)

Free result memory

int msql_free_result (int query_identifier)

 Msql_free_result() frees the memory associated with query_identifier. When PHP completes a request, this memory is freed automatically, so you only need to call this function when you want to make sure you don't use too much memory while the script is running.

msql_freeresult (PHP3 , PHP4)

Free result memory

See msql_free_result()

msql_list_fields (PHP3 , PHP4)

List result fields

int msql_list_fields (string database, string tablename)

 Msql_list_fields() retrieves information about the given tablename. Arguments are the database name and the table name. A result pointer is returned which can be used with msql_fieldflags(), msql_fieldlen(), msql_fieldname(), and msql_fieldtype(). A query identifier is a positive integer. The function returns -1 if a error occurs. A string describing the error will be placed in $phperrmsg, and unless the function was called as @msql_list_fields() then this error string will also be printed out.

 See also msql_error().

msql_listfields (PHP3 , PHP4)

List result fields

 See msql_list_fields().

msql_list_dbs (PHP3 , PHP4)

List mSQL databases on server

int msql_list_dbs(void);

 msql_list_dbs() will return a result pointer containing the databases available from the current msql daemon. Use the msql_dbname() function to traverse this result pointer.

msql_listdbs (PHP3 , PHP4)

List mSQL databases on server

 See msql_list_dbs().

msql_list_tables (PHP3 , PHP4)

List tables in an mSQL database

int msql_list_tables (string database)

 Msql_list_tables() takes a database name and result pointer much like the msql() function. The msql_tablename() function should be used to extract the actual table names from the result pointer.

msql_listtables (PHP3 , PHP4)

List tables in an mSQL database

 See msql_list_tables().

msql_num_fields (PHP3 , PHP4)

Get number of fields in result

int msql_num_fields (int query_identifier)

 Msql_num_fields() returns the number of fields in a result set.

 See also: msql(), msql_query(), msql_fetch_field(), and msql_num_rows().

msql_num_rows (PHP3 , PHP4)

Get number of rows in result

int msql_num_rows (int query_identifier)

 Msql_num_rows() returns the number of rows in a result set.

 See also: msql(), msql_query(), and msql_fetch_row().

msql_numfields (PHP3 , PHP4)

Get number of fields in result

int msql_numfields (int query_identifier)

 Identical to msql_num_fields().

msql_numrows (PHP3 , PHP4)

Get number of rows in result

int msql_numrows(void);

 Identical to msql_num_rows().

msql_pconnect (PHP3 , PHP4)

Open persistent mSQL connection

int msql_pconnect (string hostname)

 Returns a positive mSQL persistent link identifier on success, or false on error.

 Msql_pconnect() acts very much like msql_connect() with two major differences.

 First, when connecting, the function would first try to find a (persistent) link that's already open with the same host. If one is found, an identifier for it will be returned instead of opening a new connection.

 Second, the connection to the SQL server will not be closed when the execution of the script ends. Instead, the link will remain open for future use (msql_close() will not close links established by msql_pconnect()).

 This type of links is therefore called 'persistent'.

msql_query (PHP3 , PHP4)

Send mSQL query

int msql_query (string query, int link_identifier)

 Msql_query() sends a query to the currently active database on the server that's associated with the specified link identifier. If the link identifier isn't specified, the last opened link is assumed. If no link is open, the function tries to establish a link as if msql_connect() was called, and use it.

 Returns a positive mSQL query identifier on success, or false on error.

 See also: msql(), msql_select_db(), and msql_connect().

msql_regcase (PHP3 , PHP4)

 Make regular expression for case insensitive match

See sql_regcase().

msql_result (PHP3 , PHP4)

Get result data

int msql_result (int query_identifier, int i, mixed field)

 Returns the contents of the cell at the row and offset in the specified mSQL result set.

 Msql_result() returns the contents of one cell from a mSQL result set. The field argument can be the field's offset, or the field's name, or the field's table dot field's name (fieldname.tablename). If the column name has been aliased ('select foo as bar from ...'), use the alias instead of the column name.

 When working on large result sets, you should consider using one of the functions that fetch an entire row (specified below). As these functions return the contents of multiple cells in one function call, they're MUCH quicker than msql_result(). Also, note that specifying a numeric offset for the field argument is much quicker than specifying a fieldname or tablename.fieldname argument.

 Recommended high-performance alternatives: msql_fetch_row(), msql_fetch_array(), and msql_fetch_object().

msql_select_db (PHP3 , PHP4)

Select mSQL database

int msql_select_db (string database_name, int link_identifier)

 Returns true on success, false on error.

 Msql_select_db() sets the current active database on the server that's associated with the specified link identifier. If no link identifier is specified, the last opened link is assumed. If no link is open, the function will try to establish a link as if msql_connect() was called, and use it.

 Every subsequent call to msql_query() will be made on the active database.

 See also: msql_connect(), msql_pconnect(), and msql_query().

msql_selectdb (PHP3 , PHP4)

Select mSQL database

See msql_select_db().

msql_tablename (PHP3 , PHP4)

Get table name of field

string msql_tablename (int query_identifier, int field)

 Msql_tablename() takes a result pointer returned by the msql_list_tables() function as well as an integer index and returns the name of a table. The msql_numrows() function may be used to determine the number of tables in the result pointer.

Example 1. Msql_tablename() example

<?php

msql_connect ("localhost");

$result = msql_list_tables ("wisconsin");

$i = 0;

while ($i < msql_numrows ($result)) {

 $tb_names[$i] = msql_tablename ($result, $i);

 echo $tb_names[$i] . "
";

 $i++;

}

?>

XL. MySQL functions

 These functions allow you to access MySQL database servers. In order to have these functions available, you must compile php with mysql support by using the --with-mysql option. If you use this option without specifying the path to mysql, php will use the built-in mysql client libraries. Users who run other applications that use mysql (for example, running php3 and php4 as concurrent apache modules, or auth-mysql) should always specify the path to mysql: --with-mysql=/path/to/mysql. This will force php to use the client libraries installed by mysql, avoiding any conflicts.

 More information about MySQL can be found at http://www.mysql.com/.

mysql_affected_rows (PHP3 , PHP4)

Get number of affected rows in previous MySQL operation

int mysql_affected_rows ([int link_identifier])

 mysql_affected_rows() returns the number of rows affected by the last INSERT, UPDATE or DELETE query on the server associated with the specified link identifier. If the link identifier isn't specified, the last opened link is assumed.

 If the last query was a DELETE query with no WHERE clause, all of the records will have been deleted from the table but this function will return zero.

 This command is not effective for SELECT statements, only on statements which modify records. To retrieve the number of rows returned from a SELECT, use mysql_num_rows().

mysql_change_user (PHP3 >= 3.0.13)

 Change logged in user of the active connection

int mysql_change_user (string user, string password [, string database [, int link_identifier]])

 mysql_change_user() changes the logged in user of the current active connection, or the connection given by the optional parameter link_identifier. If a database is specified, this will default or current database after the user has been changed. If the new user and password authorization fails, the current connected user stays active.

Note: This function was introduced in PHP 3.0.13 and requires MySQL 3.23.3 or higher.

mysql_close (PHP3 , PHP4)

Close MySQL connection

int mysql_close ([int link_identifier])

 Returns: true on success, false on error.

 mysql_close() closes the link to a MySQL database that's associated with the specified link identifier. If the link identifier isn't specified, the last opened link is assumed.

Note: This isn't usually necessary, as non-persistent open links are automatically closed at the end of the script's execution.

 mysql_close() will not close persistent links generated by mysql_pconnect().

Example 1. MySQL close example

<?php

 $link = mysql_connect ("kraemer", "marliesle", "secret")

 or die ("Could not connect");

 print ("Connected successfully");

 mysql_close ($link);

?>

 See also: mysql_connect(), and mysql_pconnect().

mysql_connect (PHP3 , PHP4)

Open a connection to a MySQL Server

int mysql_connect ([string hostname [:port] [:/path/to/socket] [, string username [, string password]]])

 Returns: A positive MySQL link identifier on success, or an error message on failure.

 mysql_connect() establishes a connection to a MySQL server. All of the arguments are optional, and if they're missing, defaults are assumed ('localhost', user name of the user that owns the server process, empty password).

 The hostname string can also include a port number. eg. "hostname:port" or a path to a socket eg. ":/path/to/socket" for the localhost.

Note: Support for ":port" was added in PHP 3.0B4.

Support for ":/path/to/socket" was added in PHP 3.0.10.

You can suppress the error message on failure by prepending '@' to the function name.

 In case a second call is made to mysql_connect() with the same arguments, no new link will be established, but instead, the link identifier of the already opened link will be returned.

 The link to the server will be closed as soon as the execution of the script ends, unless it's closed earlier by explicitly calling mysql_close().

Example 1. MySQL connect example

<?php

 $link = mysql_connect ("kraemer", "marliesle", "secret")

 or die ("Could not connect");

 print ("Connected successfully");

 mysql_close ($link);

?>

 See also mysql_pconnect(), and mysql_close().

mysql_create_db (PHP3 , PHP4)

Create a MySQL database

int mysql_create_db (string database name [, int link_identifier])

 mysql_create_db() attempts to create a new database on the server associated with the specified link identifier.

Example 1. MySQL create database example

<?php

 $link = mysql_pconnect ("kron", "jutta", "geheim")

 or die ("Could not connect");

 if (mysql_create_db ("my_db")) {

 print ("Database created successfully\n");

 } else {

 printf ("Error creating database: %s\n", mysql_error ());

 }

?>

 For downwards compatibility mysql_createdb() can also be used.

 See also: mysql_drop_db().

mysql_data_seek (PHP3 , PHP4)

Move internal result pointer

int mysql_data_seek (int result_identifier, int row_number)

 Returns: true on success, false on failure.

 mysql_data_seek() moves the internal row pointer of the MySQL result associated with the specified result identifier to point to the specified row number. The next call to mysql_fetch_row() would return that row.

 Row_number starts at 0.

Example 1. MySQL data seek example

<?php

 $link = mysql_pconnect ("kron", "jutta", "geheim")

 or die ("Could not connect");

 mysql_select_db ("samp_db")

 or die ("Could not select database");

 $query = "SELECT last_name, first_name FROM friends";

 $result = mysql_query ($query)

 or die ("Query failed");

 # fetch rows in reverse order

 for ($i = mysql_num_rows ($result) - 1; $i >=0; $i--) {

 if (!mysql_data_seek ($result, $i)) {

 printf ("Cannot seek to row %d\n", $i);

 continue;

 }

 if(!($row = mysql_fetch_object ($result)))

 continue;

 printf ("%s %s
\n", $row->last_name, $row->first_name);

 }

 mysql_free_result ($result);

?>

mysql_db_query (PHP3 , PHP4)

Send a MySQL query

int mysql_db_query (string database, string query [, int link_identifier])

 Returns: A positive MySQL result identifier to the query result, or false on error.

 mysql_db_query() selects a database and executes a query on it. If the optional link identifier isn't specified, the function will try to find an open link to the MySQL server and if no such link is found it'll try to create one as if mysql_connect() was called with no arguments

 See also mysql_connect().

 For downwards compatibility mysql() can also be used.

mysql_drop_db (PHP3 , PHP4)

Drop (delete) a MySQL database

int mysql_drop_db (string database_name [, int link_identifier])

 Returns: true on success, false on failure.

 mysql_drop_db() attempts to drop (remove) an entire database from the server associated with the specified link identifier.

 See also: mysql_create_db(). For downward compatibility mysql_dropdb() can also be used.

mysql_errno (PHP3 , PHP4)

Returns the numerical value of the error message from previous MySQL operation

int mysql_errno ([int link_identifier])

 Errors coming back from the mySQL database backend no longer issue warnings. Instead, use these functions to retrieve the error number.

<?php

mysql_connect("marliesle");

echo mysql_errno().": ".mysql_error()."
";

mysql_select_db("nonexistentdb");

echo mysql_errno().": ".mysql_error()."
";

$conn = mysql_query("SELECT * FROM nonexistenttable");

echo mysql_errno().": ".mysql_error()."
";

?>

 See also: mysql_error()

mysql_error (PHP3 , PHP4)

Returns the text of the error message from previous MySQL operation

string mysql_error ([int link_identifier])

 Errors coming back from the mySQL database backend no longer issue warnings. Instead, use these functions to retrieve the error string.

<?php

mysql_connect("marliesle");

echo mysql_errno().": ".mysql_error()."
";

mysql_select_db("nonexistentdb");

echo mysql_errno().": ".mysql_error()."
";

$conn = mysql_query("SELECT * FROM nonexistenttable");

echo mysql_errno().": ".mysql_error()."
";

?>

 See also: mysql_errno()

mysql_fetch_array (PHP3 , PHP4)

 Fetch a result row as an associative array

array mysql_fetch_array (int result [, int result_type])

 Returns an array that corresponds to the fetched row, or false if there are no more rows.

 mysql_fetch_array() is an extended version of mysql_fetch_row(). In addition to storing the data in the numeric indices of the result array, it also stores the data in associative indices, using the field names as keys.

 If two or more columns of the result have the same field names, the last column will take precedence. To access the other column(s) of the same name, you must the numeric index of the column or make an alias for the column.

select t1.f1 as foo t2.f1 as bar from t1, t2

 An important thing to note is that using mysql_fetch_array() is NOT significantly slower than using mysql_fetch_row(), while it provides a significant added value.

 The optional second argument result_type in mysql_fetch_array() is a constant and can take the following values: MYSQL_ASSOC, MYSQL_NUM, and MYSQL_BOTH. (This feature was added in PHP 3.0.7)

 For further details, see also mysql_fetch_row().

Example 1. Mysql_fetch_array()

<?php

mysql_connect ($host, $user, $password);

$result = mysql_db_query ("database","select * from table");

while ($row = mysql_fetch_array ($result)) {

 echo $row["user_id"];

 echo $row["fullname"];

}

mysql_free_result ($result);

?>

mysql_fetch_field (PHP3 , PHP4)

 Get column information from a result and return as an object

object mysql_fetch_field (int result [, int field_offset])

 Returns an object containing field information.

 mysql_fetch_field() can be used in order to obtain information about fields in a certain query result. If the field offset isn't specified, the next field that wasn't yet retrieved by mysql_fetch_field() is retrieved.

 The properties of the object are:

•
 name - column name

•
 table - name of the table the column belongs to

•
 max_length - maximum length of the column

•
 not_null - 1 if the column cannot be null

•
 primary_key - 1 if the column is a primary key

•
 unique_key - 1 if the column is a unique key

•
 multiple_key - 1 if the column is a non-unique key

•
 numeric - 1 if the column is numeric

•
 blob - 1 if the column is a BLOB

•
 type - the type of the column

•
 unsigned - 1 if the column is unsigned

•
 zerofill - 1 if the column is zero-filled

Example 1. Mysql_fetch_field()

<?php

mysql_connect ($host, $user, $password)

 or die ("Could not connect");

$result = mysql_db_query ("database", "select * from table")

 or die ("Query failed");

get column metadata

$i = 0;

while ($i < mysql_num_fields ($result)) {

 echo "Information for column $i:
\n";

 $meta = mysql_fetch_field ($result);

 if (!$meta) {

 echo "No information available
\n";

 }

 echo "<PRE>

blob: $meta->blob

max_length: $meta->max_length

multiple_key: $meta->multiple_key

name: $meta->name

not_null: $meta->not_null

numeric: $meta->numeric

primary_key: $meta->primary_key

table: $meta->table

type: $meta->type

unique_key: $meta->unique_key

unsigned: $meta->unsigned

zerofill: $meta->zerofill

</PRE>";

 $i++;

}

mysql_free_result ($result);

?>

 See also mysql_field_seek().

mysql_fetch_lengths (PHP3 , PHP4)

 Get the length of each output in a result

array mysql_fetch_lengths (int result)

 Returns: An array that corresponds to the lengths of each field in the last row fetched by mysql_fetch_row(), or false on error.

 mysql_fetch_lengths() stores the lengths of each result column in the last row returned by mysql_fetch_row(), mysql_fetch_array(), and mysql_fetch_object() in an array, starting at offset 0.

 See also: mysql_fetch_row().

mysql_fetch_object (PHP3 , PHP4)

Fetch a result row as an object

object mysql_fetch_object (int result [, int result_typ])

 Returns an object with properties that correspond to the fetched row, or false if there are no more rows.

 mysql_fetch_object() is similar to mysql_fetch_array(), with one difference - an object is returned, instead of an array. Indirectly, that means that you can only access the data by the field names, and not by their offsets (numbers are illegal property names).

 The optional argument result_typ is a constant and can take the following values: MYSQL_ASSOC, MYSQL_NUM, and MYSQL_BOTH.

 Speed-wise, the function is identical to mysql_fetch_array(), and almost as quick as mysql_fetch_row() (the difference is insignificant).

Example 1. mysql fetch object

<?php

mysql_connect ($host, $user, $password);

$result = mysql_db_query ("database", "select * from table");

while ($row = mysql_fetch_object ($result)) {

 echo $row->user_id;

 echo $row->fullname;

}

mysql_free_result ($result);

?>

 See also: mysql_fetch_array() and mysql_fetch_row().

mysql_fetch_row (PHP3 , PHP4)

Get a result row as an enumerated array

array mysql_fetch_row (int result)

 Returns: An array that corresponds to the fetched row, or false if there are no more rows.

 mysql_fetch_row() fetches one row of data from the result associated with the specified result identifier. The row is returned as an array. Each result column is stored in an array offset, starting at offset 0.

 Subsequent call to mysql_fetch_row() would return the next row in the result set, or false if there are no more rows.

 See also: mysql_fetch_array(), mysql_fetch_object(), mysql_data_seek(), mysql_fetch_lengths(), and mysql_result().

mysql_field_flags (PHP3 , PHP4)

 Get the flags associated with the specified field in a result

string mysql_field_flags (int result, int field_offset)

 mysql_field_flags() returns the field flags of the specified field. The flags are reported as a single word per flag separated by a single space, so that you can split the returned value using explode().

The following flags are reported, if your version of MySQL is current enough to support them: "not_null", "primary_key", "unique_key", "multiple_key", "blob", "unsigned", "zerofill", "binary", "enum", "auto_increment", "timestamp".

 For downward compatibility mysql_fieldflags() can also be used.

mysql_field_name (PHP3 , PHP4)

 Get the name of the specified field in a result

string mysql_field_name (int result, int field_index)

 mysql_field_name() returns the name of the specified field. Arguments to the function is the result identifier and the field index, ie. mysql_field_name($result,2);

 Will return the name of the second field in the result associated with the result identifier.

 For downwards compatibility mysql_fieldname() can also be used.

mysql_field_len (PHP3 , PHP4)

 Returns the length of the specified field

int mysql_field_len (int result, int field_offset)

 mysql_field_len() returns the length of the specified field. For downward compatibility mysql_fieldlen() can also be used.

mysql_field_seek (PHP3 , PHP4)

 Set result pointer to a specified field offset

int mysql_field_seek (int result, int field_offset)

 Seeks to the specified field offset. If the next call to mysql_fetch_field() won't include a field offset, this field would be returned.

 See also: mysql_fetch_field().

mysql_field_table (PHP3 , PHP4)

 Get name of the table the specified field is in

string mysql_field_table (int result, int field_offset)

 Get the table name for field. For downward compatibility mysql_fieldtable() can also be used.

mysql_field_type (PHP3 , PHP4)

 Get the type of the specified field in a result

string mysql_field_type (int result, int field_offset)

 mysql_field_type() is similar to the mysql_field_name() function. The arguments are identical, but the field type is returned. This will be one of "int", "real", "string", "blob", or others as detailed in the MySQL documentation.

Example 1. mysql field types

<?php

mysql_connect ("localhost:3306");

mysql_select_db ("wisconsin");

$result = mysql_query ("SELECT * FROM onek");

$fields = mysql_num_fields ($result);

$rows = mysql_num_rows ($result);

$i = 0;

$table = mysql_field_table ($result, $i);

echo "Your '".$table."' table has ".$fields." fields and ".$rows." records
";

echo "The table has the following fields
";

while ($i < $fields) {

 $type = mysql_field_type ($result, $i);

 $name = mysql_field_name ($result, $i);

 $len = mysql_field_len ($result, $i);

 $flags = mysql_field_flags ($result, $i);

 echo $type." ".$name." ".$len." ".$flags."
";

 $i++;

}

mysql_close();

?>

 For downward compatibility mysql_fieldtype() can also be used.

mysql_free_result (PHP3 , PHP4)

Free result memory

int mysql_free_result (int result)

 mysql_free_result() only needs to be called if you are worried about using too much memory while your script is running. All associated result memory for the specified result identifier will automatically be freed.

 For downward compatibility mysql_freeresult() can also be used.

mysql_insert_id (PHP3 , PHP4)

 Get the id generated from the previous INSERT operation

int mysql_insert_id ([int link_identifier])

 mysql_insert_id() returns the ID generated for an AUTO_INCREMENTED field. It will return the auto-generated ID returned by the last INSERT query performed using the given link_identifier. If link_identifier isn't specified, the last opened link is assumed.

mysql_list_dbs (PHP3 , PHP4)

 List databases available on a MySQL server

int mysql_list_dbs ([int link_identifier])

 mysql_list_dbs() will return a result pointer containing the databases available from the current mysql daemon. Use the mysql_tablename() function to traverse this result pointer.

 For downward compatibility mysql_listdbs() can also be used.

mysql_list_fields (PHP3 , PHP4)

List MySQL result fields

int mysql_list_fields (string database_name, string table_name [, int link_identifier])

 mysql_list_fields() retrieves information about the given tablename. Arguments are the database name and the table name. A result pointer is returned which can be used with mysql_field_flags(), mysql_field_len(), mysql_field_name(), and mysql_field_type().

 A result identifier is a positive integer. The function returns -1 if a error occurs. A string describing the error will be placed in $phperrmsg, and unless the function was called as @mysql() then this error string will also be printed out.

 For downward compatibility mysql_listfields() can also be used.

mysql_list_tables (PHP3 , PHP4)

List tables in a MySQL database

int mysql_list_tables (string database [, int link_identifier])

 mysql_list_tables() takes a database name and returns a result pointer much like the mysql_db_query() function. The mysql_tablename() function should be used to extract the actual table names from the result pointer.

 For downward compatibility mysql_listtables() can also be used.

mysql_num_fields (PHP3 , PHP4)

Get number of fields in result

int mysql_num_fields (int result)

 mysql_num_fields() returns the number of fields in a result set.

 See also: mysql_db_query(), mysql_query(), mysql_fetch_field(), mysql_num_rows().

 For downward compatibility mysql_numfields() can also be used.

mysql_num_rows (PHP3 , PHP4)

Get number of rows in result

int mysql_num_rows (int result)

 mysql_num_rows() returns the number of rows in a result set. This command is only valid for SELECT statements. To retrieve the number of rows returned from a INSERT, UPDATE or DELETE, use mysql_affected_rows().

 See also: mysql_db_query(), mysql_query() and, mysql_fetch_row().

 For downward compatibility mysql_numrows() can also be used.

mysql_pconnect (PHP3 , PHP4)

 Open a persistent connection to a MySQL Server

int mysql_pconnect ([string hostname [:port] [:/path/to/socket] [, string username [, string password]]])

 Returns: A positive MySQL persistent link identifier on success, or false on error.

 mysql_pconnect() establishes a connection to a MySQL server. All of the arguments are optional, and if they're missing, defaults are assumed ('localhost', user name of the user that owns the server process, empty password).

 The hostname string can also include a port number. eg. "hostname:port" or a path to a socket eg. ":/path/to/socket" for the localhost.

Note: Support for ":port" wass added in 3.0B4.

Support for the ":/path/to/socket" was added in 3.0.10.

 mysql_pconnect() acts very much like mysql_connect() with two major differences.

 First, when connecting, the function would first try to find a (persistent) link that's already open with the same host, username and password. If one is found, an identifier for it will be returned instead of opening a new connection.

 Second, the connection to the SQL server will not be closed when the execution of the script ends. Instead, the link will remain open for future use (mysql_close() will not close links established by mysql_pconnect()).

 This type of links is therefore called 'persistent'.

mysql_query (PHP3 , PHP4)

Send a MySQL query

int mysql_query (string query [, int link_identifier])

 mysql_query() sends a query to the currently active database on the server that's associated with the specified link identifier. If link_identifier isn't specified, the last opened link is assumed. If no link is open, the function tries to establish a link as if mysql_connect() was called with no arguments, and use it.

 The query string should not end with a semicolon.

 mysql_query() returns TRUE (non-zero) or FALSE to indicate whether or not the query succeeded. A return value of TRUE means that the query was legal and could be executed by the server. It does not indicate anything about the number of rows affected or returned. It is perfectly possible for a query to succeed but affect no rows or return no rows.

 The following query is syntactically invalid, so mysql_query() fails and returns FALSE:

Example 1. mysql_query()

<?php

$result = mysql_query ("SELECT * WHERE 1=1")

 or die ("Invalid query");

?>

 The following query is semantically invalid if my_col is not a column in the table my_tbl, so mysql_query() fails and returns FALSE:

Example 2. mysql_query()

<?php

$result = mysql_query ("SELECT my_col FROM my_tbl")

 or die ("Invalid query");

?>

 mysql_query() will also fail and return FALSE if you don't have permission to access the table(s) referenced by the query.

 Assuming the query succeeds, you can call mysql_affected_rows() to find out how many rows were affected (for DELETE, INSERT, REPLACE, or UPDATE statements). For SELECT statements, mysql_query() returns a new result identifier that you can pass to mysql_result(). When you are done with the result set, you can free the resources associated with it by calling mysql_free_result().

 See also: mysql_affected_rows(), mysql_db_query(), mysql_free_result(), mysql_result(), mysql_select_db(), and mysql_connect().

mysql_result (PHP3 , PHP4)

Get result data

int mysql_result (int result, int row [, mixed field])

 mysql_result() returns the contents of one cell from a MySQL result set. The field argument can be the field's offset, or the field's name, or the field's table dot field's name (fieldname.tablename). If the column name has been aliased ('select foo as bar from...'), use the alias instead of the column name.

 When working on large result sets, you should consider using one of the functions that fetch an entire row (specified below). As these functions return the contents of multiple cells in one function call, they're MUCH quicker than mysql_result(). Also, note that specifying a numeric offset for the field argument is much quicker than specifying a fieldname or tablename.fieldname argument.

 Calls mysql_result() should not be mixed with calls to other functions that deal with the result set.

 Recommended high-performance alternatives: mysql_fetch_row(), mysql_fetch_array(), and mysql_fetch_object().

mysql_select_db (PHP3 , PHP4)

Select a MySQL database

int mysql_select_db (string database_name [, int link_identifier])

 Returns: true on success, false on error.

 mysql_select_db() sets the current active database on the server that's associated with the specified link identifier. If no link identifier is specified, the last opened link is assumed. If no link is open, the function will try to establish a link as if mysql_connect() was called, and use it.

 Every subsequent call to mysql_query() will be made on the active database.

 See also: mysql_connect(), mysql_pconnect(), and mysql_query().

 For downward compatibility mysql_selectdb() can also be used.

mysql_tablename (PHP3 , PHP4)

Get table name of field

string mysql_tablename (int result, int i)

 mysql_tablename() takes a result pointer returned by the mysql_list_tables() function as well as an integer index and returns the name of a table. The mysql_num_rows() function may be used to determine the number of tables in the result pointer.

Example 1. Mysql_tablename() Example

<?php

mysql_connect ("localhost:3306");

$result = mysql_list_tables ("wisconsin");

$i = 0;

while ($i < mysql_num_rows ($result)) {

 $tb_names[$i] = mysql_tablename ($result, $i);

 echo $tb_names[$i] . "
";

 $i++;

}

?>

XLI. Network Functions

checkdnsrr (PHP3 , PHP4)

 Check DNS records corresponding to a given Internet host name or IP address

int checkdnsrr (string host [, string type])

 Searches DNS for records of type type corresponding to host. Returns true if any records are found; returns false if no records were found or if an error occurred.

 type may be any one of: A, MX, NS, SOA, PTR, CNAME, or ANY. The default is MX.

 Host may either be the IP address in dotted-quad notation or the host name.

 See also getmxrr(), gethostbyaddr(), gethostbyname(), gethostbynamel(), and the named(8) manual page.

closelog (PHP3 , PHP4)

Close connection to system logger

int closelog(void);

 Closelog() closes the descriptor being used to write to the system logger. The use of closelog() is optional.

debugger_off (PHP3)

Disable internal PHP debugger

int debugger_off(void);

 Disables the internal PHP debugger. The debugger is still under development.

debugger_on (PHP3)

Enable internal PHP debugger

int debugger_on (string address)

 Enables the internal PHP debugger, connecting it to address. The debugger is still under development.

fsockopen (PHP3 , PHP4)

 Open Internet or Unix domain socket connection

int fsockopen (string [udp://]hostname, int port [, int errno [, string errstr [, double timeout]]])

 Initiates a stream connection in the Internet (AF_INET, using TCP or UDP) or Unix (AF_UNIX) domain. For the Internet domain, it will open a TCP socket connection to hostname on port port. hostname may in this case be either a fully qualified domain name or an IP address. For UDP connections, you need to explicitely specify the the protocol: udp://hostname. For the Unix domain, hostname will be used as the path to the socket, port must be set to 0 in this case. The optional timeout can be used to set a timeout in seconds for the connect system call.

 Fsockopen() returns a file pointer which may be used together with the other file functions (such as fgets(), fgetss(), fputs(), fclose(), and feof()).

 If the call fails, it will return false and if the optional errno and errstr arguments are present they will be set to indicate the actual system level error that occurred on the system-level connect() call. If the returned errno is 0 and the function returned false, it is an indication that the error occurred before the connect() call. This is most likely due to a problem initializing the socket. Note that the errno and errstr arguments must be passed by reference.

 Depending on the environment, the Unix domain or the optional connect timeout may not be available.

 The socket will by default be opened in blocking mode. You can switch it to non-blocking mode by using socket_set_blocking().

Example 1. Fsockopen() Example

$fp = fsockopen ("www.php.net", 80, &$errno, &$errstr, 30);

if (!$fp) {

 echo "$errstr ($errno)
\n";

} else {

 fputs ($fp, "GET / HTTP/1.0\r\n\r\n");

 while (!feof($fp)) {

 echo fgets ($fp,128);

 }

 fclose ($fp);

}

 The example below shows how to retrieve the day and time from the UDP service "daytime" (port 13) in your own machine.

Example 2. Using UDP connection

<?php

$fp = fsockopen("udp://127.0.0.1", 13, &$errno, &$errstr);

if (!$fp) {

 echo "ERROR: $errno - $errstr
\n";

} else {

 fwrite($fp,"\n");

 echo fread($fp, 26);

 fclose($fp);

}

?>

 See also: pfsockopen()

gethostbyaddr (PHP3 , PHP4)

 Get the Internet host name corresponding to a given IP address

string gethostbyaddr (string ip_address)

 Returns the host name of the Internet host specified by ip_address. If an error occurs, returns ip_address.

 See also gethostbyname().

gethostbyname (PHP3 , PHP4)

 Get the IP address corresponding to a given Internet host name

string gethostbyname (string hostname)

 Returns the IP address of the Internet host specified by hostname.

 See also gethostbyaddr().

gethostbynamel (PHP3 , PHP4)

 Get a list of IP addresses corresponding to a given Internet host name

array gethostbynamel (string hostname)

 Returns a list of IP addresses to which the Internet host specified by hostname resolves.

 See also gethostbyname(), gethostbyaddr(), checkdnsrr(), getmxrr(), and the named(8) manual page.

getmxrr (PHP3 , PHP4)

 Get MX records corresponding to a given Internet host name

int getmxrr (string hostname, array mxhosts [, array weight])

 Searches DNS for MX records corresponding to hostname. Returns true if any records are found; returns false if no records were found or if an error occurred.

 A list of the MX records found is placed into the array mxhosts. If the weight array is given, it will be filled with the weight information gathered.

 See also checkdnsrr(), gethostbyname(), gethostbynamel(), gethostbyaddr(), and the named(8) manual page.

getprotobyname (PHP4 >= 4.0b4)

 Get protocol number associated with protocol name

int getprotobyname (string name)

 Getprotobyname() returns the protocol number associated with the protocol name as per /etc/protocols.

 See also: getprotobynumber().

getprotobynumber (PHP4 >= 4.0b4)

 Get protocol name associated with protocol number

string getprotobynumber (int number)

 Getprotobynumber() returns the protocol name associated with protocol number as per /etc/protocols.

 See also: getprotobyname().

getservbyname (PHP4 >= 4.0b4)

 Get port number associated with an Internet service and protocol

int getservbyname (string service, string protocol)

 Getservbyname() returns the Internet port which corresponds to service for the specified protocol as per /etc/services. protocol is either TCP or UDP.

 See also: getservbyport().

getservbyport (PHP4 >= 4.0b4)

 Get Internet service which corresponds to port and protocol

string getservbyport (int port, string protocol)

 Getservbyport() returns the Internet service associated with port for the specified protocol as per /etc/services. protocol is either TCP or UDP.

 See also: getservbyname().

openlog (PHP3 , PHP4)

Open connection to system logger

int openlog (string ident, int option, int facility)

 Openlog() opens a connection to the system logger for a program. The string ident is added to each message. Values for option and facility are given in the next section. The use of openlog() is optional; It will automatically be called by syslog() if necessary, in which case ident will default to false.

 See also syslog() and closelog().

pfsockopen (PHP3 >= 3.0.7, PHP4)

 Open persistent Internet or Unix domain socket connection

int pfsockopen (string hostname, int port [, int errno [, string errstr [, int timeout]]])

 This function behaves exactly as fsockopen() with the difference that the connection is not closed after the script finishes. It is the persistent version of fsockopen().

socket_set_blocking (PHP4 >= 4.0b4)

Set blocking/non-blocking mode on a socket

int socket_set_blocking (int socket descriptor, int mode)

 If mode is false, the given socket descriptor will be switched to non-blocking mode, and if true, it will be switched to blocking mode. This affects calls like fgets() that read from the socket. In non-blocking mode an fgets() call will always return right away while in blocking mode it will wait for data to become available on the socket.

 This function was previously called as set_socket_blocking() but this usage is deprecated.

syslog (PHP3 , PHP4)

Generate a system log message

int syslog (int priority, string message)

 Syslog() generates a log message that will be distributed by the system logger. priority is a combination of the facility and the level, values for which are given in the next section. The remaining argument is the message to send, except that the two characters %m will be replaced by the error message string (strerror) corresponding to the present value of errno.

 More information on the syslog facilities can be found in the man pages for syslog on Unix machines.

 On Windows NT, the syslog service is emulated using the Event Log.

ip2long (PHP4 >= 4.0RC1)

 Converts a string containing an (IPv4) Internet Protocol dotted address into a proper address.

int ip2long (string ip_address)

 The function ip2long() generates an IPv4 Internet network address from its Internet standard format (dotted string) representation.

Example 1. Ip2long() Example

<?

$ip = gethostbyname("www.php.net");

$out = "The following URLs are equivalent:
\n";

$out .= "http://www.php.net/, http://".$ip."/, and http://".ip2long($ip)."/
\n";

echo $out;

?>

 See also: long2ip()

long2ip (PHP4 >= 4.0RC1)

 Converts an (IPv4) Internet network address into a string in Internet standard dotted format

string long2ip (int proper_address)

 The function long2ip() generates an Interned address in dotted format (i.e.: aaa.bbb.ccc.ddd) from the proper address representation.

 See also: ip2long()

XLII. Unified ODBC functions

 In addition to normal ODBC support, the Unified ODBC functions in PHP allow you to access several databases that have borrowed the semantics of the ODBC API to implement their own API. Instead of maintaining multiple database drivers that were all nearly identical, these drivers have been unified into a single set of ODBC functions.

 The following databases are supported by the Unified ODBC functions: Adabas D (http://www.adabas.com/), IBM DB2 (http://www.ibm.com/db2/), iODBC (http://www.iodbc.org/), Solid (http://www.solidtech.com/), and Sybase SQL Anywhere (http://www.sybase.com/).

 Please see the Installation on Unix Systems chapter for more information about configuring PHP with these databases.

Note: There is no ODBC involved when connecting to the above databases. The functions that you use to speak natively to them just happen to share the same names and syntax as the ODBC functions.

odbc_autocommit (PHP3 >= 3.0.6, PHP4)

Toggle autocommit behaviour

int odbc_autocommit (int connection_id [, int OnOff])

 Without the OnOff parameter, this function returns auto-commit status for connection_id. True is returned if auto-commit is on, false if it is off or an error occurs.

 If OnOff is true, auto-commit is enabled, if it is false auto-commit is disabled. Returns true on success, false on failure.

 By default, auto-commit is on for a connection. Disabling auto-commit is equivalent with starting a transaction.

 See also odbc_commit() and odbc_rollback().

odbc_binmode (PHP3 >= 3.0.6, PHP4)

Handling of binary column data

int odbc_binmode (int result_id, int mode)

 (ODBC SQL types affected: BINARY, VARBINARY, LONGVARBINARY)

•
 ODBC_BINMODE_PASSTHRU: Passthru BINARY data

•
 ODBC_BINMODE_RETURN: Return as is

•
 ODBC_BINMODE_CONVERT: Convert to char and return

 When binary SQL data is converted to character C data, each byte (8 bits) of source data is represented as two ASCII characters. These characters are the ASCII character representation of the number in its hexadecimal form. For example, a binary 00000001 is converted to "01" and a binary 11111111 is converted to "FF".

Table 1. LONGVARBINARY handling

	binmode
	longreadlen
	result

	ODBC_BINMODE_PASSTHRU
	0
	passthru

	ODBC_BINMODE_RETURN
	0
	passthru

	ODBC_BINMODE_CONVERT
	0
	passthru

	ODBC_BINMODE_PASSTHRU
	0
	passthru

	ODBC_BINMODE_PASSTHRU
	>0
	passthru

	ODBC_BINMODE_RETURN
	>0
	return as is

	ODBC_BINMODE_CONVERT
	>0
	return as char

 If odbc_fetch_into() is used, passthru means that an empty string is returned for these columns.

 If result_id is 0, the settings apply as default for new results.

Note: Default for longreadlen is 4096 and binmode defaults to ODBC_BINMODE_RETURN. Handling of binary long columns is also affected by odbc_longreadlen()

odbc_close (PHP3 >= 3.0.6, PHP4)

Close an ODBC connection

void odbc_close (int connection_id)

 odbc_close() will close down the connection to the database server associated with the given connection identifier.

Note: This function will fail if there are open transactions on this connection. The connection will remain open in this case.

odbc_close_all (PHP3 >= 3.0.6, PHP4)

Close all ODBC connections

void odbc_close_all(void);

 odbc_close_all() will close down all connections to database server(s).

Note: This function will fail if there are open transactions on a connection. This connection will remain open in this case.

odbc_commit (PHP3 >= 3.0.6, PHP4)

Commit an ODBC transaction

int odbc_commit (int connection_id)

 Returns: true on success, false on failure. All pending transactions on connection_id are committed.

odbc_connect (PHP3 >= 3.0.6, PHP4)

Connect to a datasource

int odbc_connect (string dsn, string user, string password [, int cursor_type])

 Returns an ODBC connection id or 0 (false) on error.

 The connection id returned by this functions is needed by other ODBC functions. You can have multiple connections open at once. The optional fourth parameter sets the type of cursor to be used for this connection. This parameter is not normally needed, but can be useful for working around problems with some ODBC drivers.

 With some ODBC drivers, executing a complex stored procedure may fail with an error similar to: "Cannot open a cursor on a stored procedure that has anything other than a single select statement in it". Using SQL_CUR_USE_ODBC may avoid that error. Also, some drivers don't support the optional row_number parameter in odbc_fetch_row(). SQL_CUR_USE_ODBC might help in that case, too.

 The following constants are defined for cursortype:

•
 SQL_CUR_USE_IF_NEEDED

•
 SQL_CUR_USE_ODBC

•
 SQL_CUR_USE_DRIVER

•
 SQL_CUR_DEFAULT

 For persistent connections see odbc_pconnect().

odbc_cursor (PHP3 >= 3.0.6, PHP4)

Get cursorname

string odbc_cursor (int result_id)

 odbc_cursor will return a cursorname for the given result_id.

odbc_do (PHP3 >= 3.0.6, PHP4)

Synonym for odbc_exec()

int odbc_do (int conn_id, string query)

 Odbc_do() will execute a query on the given connection.

odbc_exec (PHP3 >= 3.0.6, PHP4)

Prepare and execute a SQL statement

int odbc_exec (int connection_id, string query_string)

 Returns false on error. Returns an ODBC result identifier if the SQL command was executed successfully.

 odbc_exec() will send an SQL statement to the database server specified by connection_id. This parameter must be a valid identifier returned by odbc_connect() or odbc_pconnect().

 See also: odbc_prepare() and odbc_execute() for multiple execution of SQL statements.

odbc_execute (PHP3 >= 3.0.6, PHP4)

Execute a prepared statement

int odbc_execute (int result_id [, array parameters_array])

 Executes a statement prepared with odbc_prepare(). Returns true on successful execution, false otherwise. The array arameters_array only needs to be given if you really have parameters in your statement.

odbc_fetch_into (PHP3 >= 3.0.6, PHP4)

Fetch one result row into array

int odbc_fetch_into (int result_id [, int rownumber, array result_array])

 Returns the number of columns in the result; false on error. result_array must be passed by reference, but it can be of any type since it will be converted to type array. The array will contain the column values starting at array index 0.

odbc_fetch_row (PHP3 >= 3.0.6, PHP4)

Fetch a row

int odbc_fetch_row (int result_id [, int row_number])

 If odbc_fetch_row() was succesful (there was a row), true is returned. If there are no more rows, false is returned.

 odbc_fetch_row() fetches a row of the data that was returned by odbc_do() / odbc_exec(). After odbc_fetch_row() is called, the fields of that row can be accessed with odbc_result().

 If row_number is not specified, odbc_fetch_row() will try to fetch the next row in the result set. Calls to odbc_fetch_row() with and without row_number can be mixed.

 To step through the result more than once, you can call odbc_fetch_row() with row_number 1, and then continue doing odbc_fetch_row() without row_number to review the result. If a driver doesn't support fetching rows by number, the row_number parameter is ignored.

odbc_field_name (PHP3 >= 3.0.6, PHP4)

Get the columnname

string odbc_field_name (int result_id, int field_number)

 odbc_field_name() will return the name of the field occupying the given column number in the given ODBC result identifier. Field numbering starts at 1. false is returned on error.

odbc_field_num (PHP3 >= 3.0.6, PHP4)

Return column number

int odbc_field_num (int result_id, string field_name)

 odbc_field_num() will return the number of the column slot that corresponds to the named field in the given ODBC result identifier. Field numbering starts at 1. false is returned on error.

odbc_field_type (PHP3 >= 3.0.6, PHP4)

Datatype of a field

string odbc_field_type (int result_id, int field_number)

 odbc_field_type() will return the SQL type of the field referecend by number in the given ODBC result identifier. Field numbering starts at 1.

odbc_field_len (PHP3 >= 3.0.6, PHP4)

Get the length (precision) of a field

int odbc_field_len (int result_id, int field_number)

 odbc_field_len() will return the length of the field referecend by number in the given ODBC result identifier. Field numbering starts at 1.

 See also: odbc_field_scale() to get the scale of a floating point number.

odbc_field_precision (PHP4 >= 4.0.0)

Synonym for odbc_field_len()

string odbc_field_precision (int result_id, int field_number)

 odbc_field_precision() will return the precision of the field referecend by number in the given ODBC result identifier.

 See also: odbc_field_scale() to get the scale of a floating point number.

odbc_field_scale (PHP4 >= 4.0.0)

Get the scale of a field

string odbc_field_scale (int result_id, int field_number)

 odbc_field_precision() will return the scale of the field referecend by number in the given ODBC result identifier.

odbc_free_result (PHP3 >= 3.0.6, PHP4)

Free resources associated with a result

int odbc_free_result (int result_id)

 Always returns true.

 odbc_free_result() only needs to be called if you are worried about using too much memory while your script is running. All result memory will automatically be freed when the script is finished. But, if you are sure you are not going to need the result data anymore in a script, you may call odbc_free_result(), and the memory associated with result_id will be freed.

Note: If auto-commit is disabled (see odbc_autocommit()) and you call odbc_free_result() before commiting, all pending transactions are rolled back.

odbc_longreadlen (PHP3 >= 3.0.6, PHP4)

Handling of LONG columns

int odbc_longreadlen (int result_id, int length)

 (ODBC SQL types affected: LONG, LONGVARBINARY) The number of bytes returned to PHP is controled by the parameter length. If it is set to 0, Long column data is passed thru to the client.

Note: Handling of LONGVARBINARY columns is also affected by odbc_binmode().

odbc_num_fields (PHP3 >= 3.0.6, PHP4)

Number of columns in a result

int odbc_num_fields (int result_id)

 Odbc_num_fields() will return the number of fields (columns) in an ODBC result. This function will return -1 on error. The argument is a valid result identifier returned by odbc_exec().

odbc_pconnect (PHP3 >= 3.0.6, PHP4)

Open a persistent database connection

int odbc_pconnect (string dsn, string user, string password [, int cursor_type])

 Returns an ODBC connection id or 0 (false) on error. This function is much like odbc_connect(), except that the connection is not really closed when the script has finished. Future requests for a connection with the same dsn, user, password combination (via odbc_connect() and odbc_pconnect()) can reuse the persistent connection.

Note: Persistent connections have no effect if PHP is used as a CGI program.

 For information about the optional cursor_type parameter see the odbc_connect() function. For more information on persistent connections, refer to the PHP FAQ.

odbc_prepare (PHP3 >= 3.0.6, PHP4)

Prepares a statement for execution

int odbc_prepare (int connection_id, string query_string)

 Returns false on error.

 Returns an ODBC result identifier if the SQL command was prepared successfully. The result identifier can be used later to execute the statement with odbc_execute().

odbc_num_rows (PHP3 >= 3.0.6, PHP4)

Number of rows in a result

int odbc_num_rows (int result_id)

 odbc_num_rows() will return the number of rows in an ODBC result. This function will return -1 on error. For INSERT, UPDATE and DELETE statements odbc_num_rows() returns the number of rows affected. For a SELECT clause this can be the number of rows available.

 Note: Using odbc_num_rows() to determine the number of rows available after a SELECT will return -1 with many drivers.

odbc_result (PHP3 >= 3.0.6, PHP4)

Get result data

string odbc_result (int result_id, mixed field)

 Returns the contents of the field.

 field can either be an integer containing the column number of the field you want; or it can be a string containing the name of the field. For example:

$item_3 = odbc_result ($Query_ID, 3);

$item_val = odbc_result ($Query_ID, "val");

 The first call to odbc_result() returns the value of the third field in the current record of the query result. The second function call to odbc_result() returns the value of the field whose field name is "val" in the current record of the query result. An error occurs if a column number parameter for a field is less than one or exceeds the number of columns (or fields) in the current record. Similarly, an error occurs if a field with a name that is not one of the fieldnames of the table(s) that is(are) being queried.

 Field indices start from 1. Regarding the way binary or long column data is returned refer to odbc_binmode () and odbc_longreadlen().

odbc_result_all (PHP3 >= 3.0.6, PHP4)

Print result as HTML table

int odbc_result_all (int result_id [, string format])

 Returns the number of rows in the result or false on error.

 Odbc_result_all() will print all rows from a result identifier produced by odbc_exec(). The result is printed in HTML table format. With the optional string argument format, additional overall table formatting can be done.

odbc_rollback (PHP3 >= 3.0.6, PHP4)

Rollback a transaction

int odbc_rollback (int connection_id)

 Rolls back all pending statements on connection_id. Returns true on success, false on failure.

odbc_setoption (PHP3 >= 3.0.6, PHP4)

 Adjust ODBC settings. Returns false if an error occurs, otherwise true.

int odbc_setoption (int id, int function, int option, int param)

 This function allows fiddling with the ODBC options for a particular connection or query result. It was written to help find work arounds to problems in quirky ODBC drivers. You should probably only use this function if you are an ODBC programmer and understand the effects the various options will have. You will certainly need a good ODBC reference to explain all the different options and values that can be used. Different driver versions support different options.

 Because the effects may vary depending on the ODBC driver, use of this function in scripts to be made publicly available is strongly discouraged. Also, some ODBC options are not available to this function because they must be set before the connection is established or the query is prepared. However, if on a particular job it can make PHP work so your boss doesn't tell you to use a commercial product, that's all that really matters.

 ID is a connection id or result id on which to change the settings.For SQLSetConnectOption(), this is a connection id. For SQLSetStmtOption(), this is a result id.

 Function is the ODBC function to use. The value should be 1 for SQLSetConnectOption() and 2 for SQLSetStmtOption().

 Parameter option is the option to set.

 Parameter param is the value for the given option.

Example 1. ODBC Setoption Examples

// 1. Option 102 of SQLSetConnectOption() is SQL_AUTOCOMMIT.

// Value 1 of SQL_AUTOCOMMIT is SQL_AUTOCOMMIT_ON.

// This example has the same effect as

// odbc_autocommit($conn, true);

odbc_setoption ($conn, 1, 102, 1);

// 2. Option 0 of SQLSetStmtOption() is SQL_QUERY_TIMEOUT.

// This example sets the query to timeout after 30 seconds.

$result = odbc_prepare ($conn, $sql);

odbc_setoption ($result, 2, 0, 30);

odbc_execute ($result);

odbc_tables (PHP4 >= 4.0b4)

 Get the list of table names stored in a specific data source. Returns a result identifier containing the information.

int odbc_tables (int connection_id [, string qualifier [, string owner [, string name [, string types]]]])

 Lists all tables in the requested range. Returns an ODBC result identifier or false on failure.

 The result set has the following columns:

•
TABLE_QUALIFIER

•
TABLE_OWNER

•
TABLE_NAME

•
TABLE_TYPE

•
REMARKS

 The result set is ordered by TABLE_TYPE, TABLE_QUALIFIER, TABLE_OWNER and TABLE_NAME.

 The owner and name arguments accept search patterns ('%' to match zero or more characters and '_' to match a single character).

 To support enumeration of qualifiers, owners, and table types, the following special semantics for the qualifier, owner, name, and table_type are available:

•
 If qualifier is a single percent character (%) and owner and name are empty strings, then the result set contains a list of valid qualifiers for the data source. (All columns except the TABLE_QUALIFIER column contain NULLs.)

•
 If owner is a single percent character (%) and qualifier and name are empty strings, then the result set contains a list of valid owners for the data source. (All columns except the TABLE_OWNER column contain NULLs.)

•
 If table_type is a single percent character (%) and qualifier, owner and name are empty strings, then the result set contains a list of valid table types for the data source. (All columns except the TABLE_TYPE column contain NULLs.)

 If table_type is not an empty string, it must contain a list of comma-separated values for the types of interest; each value may be enclosed in single quotes (') or unquoted. For example, "'TABLE','VIEW'" or "TABLE, VIEW". If the data source does not support a specified table type, odbc_tables() does not return any results for that type.

 See also odbc_tableprivileges() to retrieve associated privileges.

odbc_tableprivileges (PHP4 >= 4.0b4)

 Lists tables and the privileges associated with each table

int odbc_tableprivileges (int connection_id [, string qualifier [, string owner [, string name]]])

 Lists tables in the requested range and the privileges associated with each table. Returns an ODBC result identifier or false on failure.

 The result set has the following columns:

•
TABLE_QUALIFIER

•
TABLE_OWNER

•
TABLE_NAME

•
GRANTOR

•
GRANTEE

•
PRIVILEGE

•
IS_GRANTABLE

 The result set is ordered by TABLE_QUALIFIER, TABLE_OWNER and TABLE_NAME.

 The owner and name arguments accept search patterns ('%' to match zero or more characters and '_' to match a single character).

odbc_columns (PHP4 >= 4.0b4)

 Lists the column names in specified tables. Returns a result identifier containing the information.

int odbc_columns (int connection_id [, string qualifier [, string owner [, string table_name [, string column_name]]]])

 Lists all columns in the requested range. Returns an ODBC result identifier or false on failure.

 The result set has the following columns:

•
TABLE_QUALIFIER

•
TABLE_OWNER

•
TABLE_NAME

•
COLUMN_NAME

•
DATA_TYPE

•
TYPE_NAME

•
PRECISION

•
LENGTH

•
SCALE

•
RADIX

•
NULLABLE

•
REMARKS

 The result set is ordered by TABLE_QUALIFIER, TABLE_OWNER and TABLE_NAME.

 The owner, table_name and column_name arguments accept search patterns ('%' to match zero or more characters and '_' to match a single character).

 See also odbc_columnprivileges() to retrieve associated privileges.

odbc_columnprivileges (PHP4 >= 4.0b4)

 Returns a result identifier that can be used to fetch a list of columns and associated privileges

int odbc_columnprivileges (int connection_id [, string qualifier [, string owner [, string table_name [, string column_name]]]])

 Lists columns and associated privileges for the given table. Returns an ODBC result identifier or false on failure.

 The result set has the following columns:

•
TABLE_QUALIFIER

•
TABLE_OWNER

•
TABLE_NAME

•
GRANTOR

•
GRANTEE

•
PRIVILEGE

•
IS_GRANTABLE

 The result set is ordered by TABLE_QUALIFIER, TABLE_OWNER and TABLE_NAME.

 The column_name argument accepts search patterns ('%' to match zero or more characters and '_' to match a single character).

odbc_gettypeinfo (PHP4 >= 4.0b4)

 Returns a result identifier containing information about data types supported by the data source.

int odbc_gettypeinfo (int connection_id [, int data_type])

 Retrieves information about data types supported by the data source. Returns an ODBC result identifier or false on failure. The optional argument data_type can be used to restrict the information to a single data type.

 The result set has the following columns:

•
TYPE_NAME

•
DATA_TYPE

•
PRECISION

•
LITERAL_PREFIX

•
LITERAL_SUFFIX

•
CREATE_PARAMS

•
NULLABLE

•
CASE_SENSITIVE

•
SEARCHABLE

•
UNSIGNED_ATTRIBUTE

•
MONEY

•
AUTO_INCREMENT

•
LOCAL_TYPE_NAME

•
MINIMUM_SCALE

•
MAXIMUM_SCALE

The result set is ordered by DATA_TYPE and TYPE_NAME.

odbc_primarykeys (PHP4 >= 4.0b4)

 Returns a result identifier that can be used to fetch the column names that comprise the primary key for a table

int odbc_primarykeys (int connection_id, string qualifier, string owner, string table)

 Returns the column names that comprise the primary key for a table. Returns an ODBC result identifier or false on failure.

 The result set has the following columns:

•
TABLE_QUALIFIER

•
TABLE_OWNER

•
TABLE_NAME

•
COLUMN_NAME

•
KEY_SEQ

•
PK_NAME

odbc_foreignkeys (PHP4 >= 4.0b4)

 Returns a list of foreign keys in the specified table or a list of foreign keys in other tables that refer to the primary key in the specified table

int odbc_foreignkeys (int connection_id, string pk_qualifier, string pk_owner, string pk_table, string fk_qualifier, string fk_owner, string fk_table)

 Odbc_foreignkeys() retrieves information about foreign keys. Returns an ODBC result identifier or false on failure.

 The result set has the following columns:

•
PKTABLE_QUALIFIER

•
PKTABLE_OWNER

•
PKTABLE_NAME

•
PKCOLUMN_NAME

•
FKTABLE_QUALIFIER

•
FKTABLE_OWNER

•
FKTABLE_NAME

•
FKCOLUMN_NAME

•
KEY_SEQ

•
UPDATE_RULE

•
DELETE_RULE

•
FK_NAME

•
PK_NAME

 If pk_table contains a table name, odbc_foreignkeys() returns a result set containing the primary key of the specified table and all of the foreign keys that refer to it.

 If fk_table contains a table name, odbc_foreignkeys() returns a result set containing all of the foreign keys in the specified table and the primary keys (in other tables) to which they refer.

 If both pk_table and fk_table contain table names, odbc_foreignkeys() returns the foreign keys in the table specified in fk_table that refer to the primary key of the table specified in pk_table. This should be one key at most.

odbc_procedures (PHP4 >= 4.0b4)

 Get the list of procedures stored in a specific data source. Returns a result identifier containing the information.

int odbc_procedures (int connection_id [, string qualifier [, string owner [, string name]]])

 Lists all procedures in the requested range. Returns an ODBC result identifier or false on failure.

 The result set has the following columns:

•
PROCEDURE_QUALIFIER

•
PROCEDURE_OWNER

•
PROCEDURE_NAME

•
NUM_INPUT_PARAMS

•
NUM_OUTPUT_PARAMS

•
NUM_RESULT_SETS

•
REMARKS

•
PROCEDURE_TYPE

 The owner and name arguments accept search patterns ('%' to match zero or more characters and '_' to match a single character).

odbc_procedurecolumns (PHP4 >= 4.0b4)

 Retrieve information about parameters to procedures

int odbc_procedurecolumns (int connection_id [, string qualifier [, string owner [, string proc [, string column]]]])

 Returns the list of input and output parameters, as well as the columns that make up the result set for the specified procedures. Returns an ODBC result identifier or false on failure.

 The result set has the following columns:

•
PROCEDURE_QUALIFIER

•
PROCEDURE_OWNER

•
PROCEDURE_NAME

•
COLUMN_NAME

•
COLUMN_TYPE

•
DATA_TYPE

•
TYPE_NAME

•
PRECISION

•
LENGTH

•
SCALE

•
RADIX

•
NULLABLE

•
REMARKS

The result set is ordered by PROCEDURE_QUALIFIER, PROCEDURE_OWNER, PROCEDURE_NAME and COLUMN_TYPE.

 The owner, proc and column arguments accept search patterns ('%' to match zero or more characters and '_' to match a single character).

odbc_specialcolumns (PHP4 >= 4.0b4)

 Returns either the optimal set of columns that uniquely identifies a row in the table or columns that are automatically updated when any value in the row is updated by a transaction

int odbc_specialcolumns (int connection_id, int type, string qualifier, string owner, string table, int scope, int nullable)

 When the type argument is SQL_BEST_ROWID, odbc_specialcolumns() returns the column or columns that uniquely identify each row in the table.

 When the type argument is SQL_ROWVER, odbc_specialcolumns() returns the optimal column or set of columns that, by retrieving values from the column or columns, allows any row in the specified table to be uniquely identified.

 Returns an ODBC result identifier or false on failure.

 The result set has the following columns:

•
SCOPE

•
COLUMN_NAME

•
DATA_TYPE

•
TYPE_NAME

•
PRECISION

•
LENGTH

•
SCALE

•
PSEUDO_COLUMN

 The result set is ordered by SCOPE.

odbc_statistics (PHP4 >= 4.0b4)

Retrieve statistics about a table

int odbc_statistics (int connection_id, string qualifier, string owner, string table_name, int unique, int accuracy)

 Get statistics about a table and it's indexes. Returns an ODBC result identifier or false on failure.

 The result set has the following columns:

•
TABLE_QUALIFIER

•
TABLE_OWNER

•
TABLE_NAME

•
NON_UNIQUE

•
INDEX_QUALIFIER

•
INDEX_NAME

•
TYPE

•
SEQ_IN_INDEX

•
COLUMN_NAME

•
COLLATION

•
CARDINALITY

•
PAGES

•
FILTER_CONDITION

 The result set is ordered by NON_UNIQUE, TYPE, INDEX_QUALIFIER, INDEX_NAME and SEQ_IN_INDEX.

XLIII. Oracle functions

Ora_Bind (PHP3 , PHP4)

bind a PHP variable to an Oracle parameter

int ora_bind (int cursor, string PHP variable name, string SQL parameter name, int length [, int type])

 Returns true if the bind succeeds, otherwise false. Details about the error can be retrieved using the ora_error() and ora_errorcode() functions.

 This function binds the named PHP variable with a SQL parameter. The SQL parameter must be in the form ":name". With the optional type parameter, you can define whether the SQL parameter is an in/out (0, default), in (1) or out (2) parameter. As of PHP 3.0.1, you can use the constants ORA_BIND_INOUT, ORA_BIND_IN and ORA_BIND_OUT instead of the numbers.

 ora_bind must be called after ora_parse() and before ora_exec(). Input values can be given by assignment to the bound PHP variables, after calling ora_exec() the bound PHP variables contain the output values if available.

<?php

ora_parse($curs, "declare tmp INTEGER; begin tmp := :in; :out := tmp; :x := 7.77; end;");

ora_bind($curs, "result", ":x", $len, 2);

ora_bind($curs, "input", ":in", 5, 1);

ora_bind($curs, "output", ":out", 5, 2);

$input = 765;

ora_exec($curs);

echo "Result: $result
Out: $output
In: $input";

?>

Ora_Close (PHP3 , PHP4)

close an Oracle cursor

int ora_close (int cursor)

 Returns true if the close succeeds, otherwise false. Details about the error can be retrieved using the ora_error() and ora_errorcode() functions.

 This function closes a data cursor opened with ora_open().

Ora_ColumnName (PHP3 , PHP4)

get name of Oracle result column

string Ora_ColumnName (int cursor, int column)

 Returns the name of the field/column column on the cursor cursor. The returned name is in all uppercase letters.

Ora_ColumnType (PHP3 , PHP4)

get type of Oracle result column

string Ora_ColumnType (int cursor, int column)

 Returns the Oracle data type name of the field/column column on the cursor cursor. The returned type will be one of the following:

	"VARCHAR2"

	"VARCHAR"

	"CHAR"

	"NUMBER"

	"LONG"

	"LONG RAW"

	"ROWID"

	"DATE"

	"CURSOR"

Ora_Commit (PHP3 , PHP4)

commit an Oracle transaction

int ora_commit (int conn)

Returns true on success, false on error. Details about the error can be retrieved using the ora_error() and ora_errorcode() functions. This function commits an Oracle transaction. A transaction is defined as all the changes on a given connection since the last commit/rollback, autocommit was turned off or when the connection was established.

Ora_CommitOff (PHP3 , PHP4)

disable automatic commit

int ora_commitoff (int conn)

 Returns true on success, false on error. Details about the error can be retrieved using the ora_error() and ora_errorcode() functions.

 This function turns off automatic commit after each ora_exec().

Ora_CommitOn (PHP3 , PHP4)

enable automatic commit

int ora_commiton (int conn)

 This function turns on automatic commit after each ora_exec() on the given connection.

 Returns true on success, false on error. Details about the error can be retrieved using the ora_error() and ora_errorcode() functions.

Ora_Error (PHP3 , PHP4)

get Oracle error message

string Ora_Error (int cursor_or_connection)

 Returns an error message of the form XXX-NNNNN where XXX is where the error comes from and NNNNN identifies the error message.

Note: Support for connection ids was added in 3.0.4.

 On UNIX versions of Oracle, you can find details about an error message like this: $ oerr ora 00001 00001, 00000, "unique constraint (%s.%s) violated" // *Cause: An update or insert statement attempted to insert a duplicate key // For Trusted ORACLE configured in DBMS MAC mode, you may see // this message if a duplicate entry exists at a different level. // *Action: Either remove the unique restriction or do not insert the key

Ora_ErrorCode (PHP3 , PHP4)

get Oracle error code

int Ora_ErrorCode (int cursor_or_connection)

 Returns the numeric error code of the last executed statement on the specified cursor or connection.

*
FIXME: should possible values be listed?

Note: Support for connection ids was added in 3.0.4.

Ora_Exec (PHP3 , PHP4)

execute parsed statement on an Oracle cursor

int ora_exec (int cursor)

 Returns true on success, false on error. Details about the error can be retrieved using the ora_error() and ora_errorcode() functions.

Ora_Fetch (PHP3 , PHP4)

fetch a row of data from a cursor

int ora_fetch (int cursor)

 Returns true (a row was fetched) or false (no more rows, or an error occured). If an error occured, details can be retrieved using the ora_error() and ora_errorcode() functions. If there was no error, ora_errorcode() will return 0. Retrieves a row of data from the specified cursor.

Ora_GetColumn (PHP3 , PHP4)

get data from a fetched row

mixed ora_getcolumn (int cursor, mixed column)

 Returns the column data. If an error occurs, False is returned and ora_errorcode() will return a non-zero value. Note, however, that a test for False on the results from this function may be true in cases where there is not error as well (NULL result, empty string, the number 0, the string "0"). Fetches the data for a column or function result.

Ora_Logoff (PHP3 , PHP4)

close an Oracle connection

int ora_logoff (int connection)

 Returns true on success, False on error. Details about the error can be retrieved using the ora_error() and ora_errorcode() functions. Logs out the user and disconnects from the server.

Ora_Logon (PHP3 , PHP4)

open an Oracle connection

int ora_logon (string user, string password)

 Establishes a connection between PHP and an Oracle database with the given username and password.

 Connections can be made using SQL*Net by supplying the TNS name to user like this:

$conn = Ora_Logon("user@TNSNAME", "pass");

 If you have character data with non-ASCII characters, you should make sure that NLS_LANG is set in your environment. For server modules, you should set it in the server's environment before starting the server.

 Returns a connection index on success, or false on failure. Details about the error can be retrieved using the ora_error() and ora_errorcode() functions.

Ora_Open (PHP3 , PHP4)

open an Oracle cursor

int ora_open (int connection)

 Opens an Oracle cursor associated with connection.

 Returns a cursor index or False on failure. Details about the error can be retrieved using the ora_error() and ora_errorcode() functions.

Ora_Parse (PHP3 , PHP4)

parse an SQL statement

int ora_parse (int cursor_ind, string sql_statement, int defer)

 This function parses an SQL statement or a PL/SQL block and associates it with the given cursor. Returns 0 on success or -1 on error.

Ora_Rollback (PHP3 , PHP4)

roll back transaction

int ora_rollback (int connection)

 This function undoes an Oracle transaction. (See ora_commit() for the definition of a transaction.)

 Returns true on success, false on error. Details about the error can be retrieved using the ora_error() and ora_errorcode() functions.

XLIV. Oracle 8 functions

 These functions allow you to access Oracle8 and Oracle7 databases. It uses the Oracle8 Call-Interface (OCI8). You will need the Oracle8 client libraries to use this extension.

 This extension is more flexible than the standard Oracle extension. It supports binding of global and local PHP variables to Oracle placeholders, has full LOB, FILE and ROWID support and allows you to use user-supplied define variables.

OCIDefineByName (PHP3 >= 3.0.7, PHP4)

 Use a PHP variable for the define-step during a SELECT

int OCIDefineByName (int stmt, string Column-Name, mixed &variable [, int type])

 OCIDefineByName() uses fetches SQL-Columns into user-defined PHP-Variables. Be careful that Oracle user ALL-UPPERCASE column-names, whereby in your select you can also write lower-case. OCIDefineByName() expects the Column-Name to be in uppercase. If you define a variable that doesn't exists in you select statement, no error will be given!

 If you need to define an abstract Datatype (LOB/ROWID/BFILE) you need to allocate it first using OCINewDescriptor() function. See also the OCIBindByName() function.

Example 1. OCIDefineByName

<?php

/* OCIDefineByPos example thies@digicol.de (980219) */

$conn = OCILogon("scott","tiger");

$stmt = OCIParse($conn,"select empno, ename from emp");

/* the define MUST be done BEFORE ociexecute! */

OCIDefineByName($stmt,"EMPNO",&$empno);

OCIDefineByName($stmt,"ENAME",&$ename);

OCIExecute($stmt);

while (OCIFetch($stmt)) {

 echo "empno:".$empno."\n";

 echo "ename:".$ename."\n";

}

OCIFreeStatement($stmt);

OCILogoff($conn);

?>

OCIBindByName (PHP3 >= 3.0.4, PHP4)

Bind a PHP variable to an Oracle Placeholder

int OCIBindByName (int stmt, string ph_name, mixed &variable, intlength [, int type])

 OCIBindByName() binds the PHP variable variable to the Oracle placeholder ph_name. Whether it will be used for input or output will be determined run-time, and the necessary storage space will be allocated. The length paramter sets the maximum length for the bind. If you set length to -1 OCIBindByName() will use the current length of variable to set the maximum length.

 If you need to bind an abstract Datatype (LOB/ROWID/BFILE) you need to allocate it first using OCINewDescriptor() function. The length is not used for abstract Datatypes and should be set to -1. The type variable tells oracle, what kind of descriptor we want to use. Possible values are: OCI_B_FILE (Binary-File), OCI_B_CFILE (Character-File), OCI_B_CLOB (Character-LOB), OCI_B_BLOB (Binary-LOB) and OCI_B_ROWID (ROWID).

Example 1. OCIDefineByName

<?php

/* OCIBindByPos example thies@digicol.de (980221)

 inserts 3 resords into emp, and uses the ROWID for updating the

 records just after the insert.

*/

$conn = OCILogon("scott","tiger");

$stmt = OCIParse($conn,"insert into emp (empno, ename) ".

 "values (:empno,:ename) ".

 "returning ROWID into :rid");

$data = array(1111 => "Larry", 2222 => "Bill", 3333 => "Jim");

$rowid = OCINewDescriptor($conn,OCI_D_ROWID);

OCIBindByName($stmt,":empno",&$empno,32);

OCIBindByName($stmt,":ename",&$ename,32);

OCIBindByName($stmt,":rid",&$rowid,-1,OCI_B_ROWID);

$update = OCIParse($conn,"update emp set sal = :sal where ROWID = :rid");

OCIBindByName($update,":rid",&$rowid,-1,OCI_B_ROWID);

OCIBindByName($update,":sal",&$sal,32);

$sal = 10000;

while (list($empno,$ename) = each($data)) {

 OCIExecute($stmt);

 OCIExecute($update);

}

$rowid->free();

OCIFreeStatement($update);

OCIFreeStatement($stmt);

$stmt = OCIParse($conn,"select * from emp where empno in (1111,2222,3333)");

OCIExecute($stmt);

while (OCIFetchInto($stmt,&$arr,OCI_ASSOC)) {

 var_dump($arr);

}

OCIFreeStatement($stmt);

/* delete our "junk" from the emp table.... */

$stmt = OCIParse($conn,"delete from emp where empno in (1111,2222,3333)");

OCIExecute($stmt);

OCIFreeStatement($stmt);

OCILogoff($conn);

?>

OCILogon (PHP3 >= 3.0.4, PHP4)

Establishes a connection to Oracle

int OCILogon (string username, string password [, string db])

 OCILogon() returns an connection identifier needed for most other OCI calls. The optional third parameter can either contain the name of the local Oracle instance or the name of the entry in tnsnames.ora to which you want to connect. If the optional third parameter is not specified, PHP uses the environment variables ORACLE_SID (Oracle instance) or TWO_TASK (tnsnames.ora) to determine which database to connect to.

Connections are shared at the page level when using OCILogon(). This means that commits and rollbacks apply to all open transactions in the page, even if you have created multiple connections.

 This example demonstrates how the connections are shared.

Example 1. OCILogon

<?php

print "<HTML><PRE>";

$db = "";

$c1 = ocilogon("scott","tiger",$db);

$c2 = ocilogon("scott","tiger",$db);

function create_table($conn)

{ $stmt = ociparse($conn,"create table scott.hallo (test varchar2(64))");

 ociexecute($stmt);

 echo $conn." created table\n\n";

}

function drop_table($conn)

{ $stmt = ociparse($conn,"drop table scott.hallo");

 ociexecute($stmt);

 echo $conn." dropped table\n\n";

}

function insert_data($conn)

{ $stmt = ociparse($conn,"insert into scott.hallo

 values('$conn' || ' ' || to_char(sysdate,'DD-MON-YY HH24:MI:SS'))");

 ociexecute($stmt,OCI_DEFAULT);

 echo $conn." inserted hallo\n\n";

}

function delete_data($conn)

{ $stmt = ociparse($conn,"delete from scott.hallo");

 ociexecute($stmt,OCI_DEFAULT);

 echo $conn." deleted hallo\n\n";

}

function commit($conn)

{ ocicommit($conn);

 echo $conn." commited\n\n";

}

function rollback($conn)

{ ocirollback($conn);

 echo $conn." rollback\n\n";

}

function select_data($conn)

{ $stmt = ociparse($conn,"select * from scott.hallo");

 ociexecute($stmt,OCI_DEFAULT);

 echo $conn."----selecting\n\n";

 while (ocifetch($stmt))

 echo $conn." <".ociresult($stmt,"TEST").">\n\n";

 echo $conn."----done\n\n";

}

create_table($c1);

insert_data($c1); // Insert a row using c1

insert_data($c2); // Insert a row using c2

select_data($c1); // Results of both inserts are returned

select_data($c2);

rollback($c1); // Rollback using c1

select_data($c1); // Both inserts have been rolled back

select_data($c2);

insert_data($c2); // Insert a row using c2

commit($c2); // commit using c2

select_data($c1); // result of c2 insert is returned

delete_data($c1); // delete all rows in table using c1

select_data($c1); // no rows returned

select_data($c2); // no rows returned

commit($c1); // commit using c1

select_data($c1); // no rows returned

select_data($c2); // no rows returned

drop_table($c1);

print "</PRE></HTML>";

?>

 See also OCIPLogon() and OCINLogon().

OCIPLogon (PHP3 >= 3.0.8, PHP4)

Connect to an Oracle database and log on using a persistant connection. Returns a new session.

int OCIPLogon (string username, string password [, string db])

 OCIPLogon() creates a persistent connection to an Oracle 8 database and logs on. The optional third parameter can either contain the name of the local Oracle instance or the name of the entry in tnsnames.ora to which you want to connect. If the optional third parameter is not specified, PHP uses the environment variables ORACLE_SID (Oracle instance) or TWO_TASK (tnsnames.ora) to determine which database to connect to.

 See also OCILogon() and OCINLogon().

OCINLogon (PHP3 >= 3.0.8, PHP4)

Connect to an Oracle database and log on using a new connection. Returns a new session.

int OCINLogon (string username, string password [, string db])

 OCINLogon() creates a new connection to an Oracle 8 database and logs on. The optional third parameter can either contain the name of the local Oracle instance or the name of the entry in tnsnames.ora to which you want to connect. If the optional third parameter is not specified, PHP uses the environment variables ORACLE_SID (Oracle instance) or TWO_TASK (tnsnames.ora) to determine which database to connect to.

 OCINLogon() forces a new connection. This should be used if you need to isolate a set of transactions. By default, connections are shared at the page level if using OCILogon() or at the web server process level if using OCIPLogon(). If you have multiple connections open using OCINLogon(), all commits and rollbacks apply to the specified connection only.

 This example demonstrates how the connections are separated.

Example 1. OCINLogon

<?php

print "<HTML><PRE>";

$db = "";

$c1 = ocilogon("scott","tiger",$db);

$c2 = ocinlogon("scott","tiger",$db);

function create_table($conn)

{ $stmt = ociparse($conn,"create table scott.hallo (test

varchar2(64))");

 ociexecute($stmt);

 echo $conn." created table\n\n";

}

function drop_table($conn)

{ $stmt = ociparse($conn,"drop table scott.hallo");

 ociexecute($stmt);

 echo $conn." dropped table\n\n";

}

function insert_data($conn)

{ $stmt = ociparse($conn,"insert into scott.hallo

 values('$conn' || ' ' || to_char(sysdate,'DD-MON-YY HH24:MI:SS'))");

 ociexecute($stmt,OCI_DEFAULT);

 echo $conn." inserted hallo\n\n";

}

function delete_data($conn)

{ $stmt = ociparse($conn,"delete from scott.hallo");

 ociexecute($stmt,OCI_DEFAULT);

 echo $conn." deleted hallo\n\n";

}

function commit($conn)

{ ocicommit($conn);

 echo $conn." commited\n\n";

}

function rollback($conn)

{ ocirollback($conn);

 echo $conn." rollback\n\n";

}

function select_data($conn)

{ $stmt = ociparse($conn,"select * from scott.hallo");

 ociexecute($stmt,OCI_DEFAULT);

 echo $conn."----selecting\n\n";

 while (ocifetch($stmt))

 echo $conn." <".ociresult($stmt,"TEST").">\n\n";

 echo $conn."----done\n\n";

}

create_table($c1);

insert_data($c1);

select_data($c1);

select_data($c2);

rollback($c1);

select_data($c1);

select_data($c2);

insert_data($c2);

commit($c2);

select_data($c1);

delete_data($c1);

select_data($c1);

select_data($c2);

commit($c1);

select_data($c1);

select_data($c2);

drop_table($c1);

print "</PRE></HTML>";

?>

 See also OCILogon() and OCIPLogon().

OCILogOff (PHP3 >= 3.0.4, PHP4)

Disconnects from Oracle

int OCILogOff (int connection)

 OCILogOff() closes an Oracle connection.

OCIExecute (PHP3 >= 3.0.4, PHP4)

Execute a statement

int OCIExecute (int statement [, int mode])

 OCIExecute() executes a previously parsed statement. (see OCIParse()). The optional mode allows you to specify the execution-mode (default is OCI_COMMIT_ON_SUCCESS). If you don't want statements to be commited automaticly specify OCI_DEFAULT as your mode.

OCICommit (PHP3 >= 3.0.7, PHP4)

Commits outstanding transactions

int OCICommit (int connection)

 OCICommit() commits all outstanding statements for Oracle connection connection.

OCIRollback (PHP3 >= 3.0.7, PHP4)

Rolls back outstanding transactions

int OCIRollback (int connection)

 OCIRollback() rolls back all outstanding statements for Oracle connection connection.

OCINewDescriptor (PHP3 >= 3.0.7, PHP4)

Initialize a new empty descriptor LOB/FILE (LOB is default)

string OCINewDescriptor (int connection [, int type])

 OCINewDescriptor() Allocates storage to hold descriptors or LOB locators. Valid values for the valid type are OCI_D_FILE, OCI_D_LOB, OCI_D_ROWID. For LOB desriptors, the methods load, save, and savefile are associated with the descriptor, for BFILE only the load method exists. See the second example usage hints.

Example 1. OCINewDescriptor

<?php

 /* This script is designed to be called from a HTML form.

 * It expects $user, $password, $table, $where, and $commitsize

 * to be passed in from the form. The script then deletes

 * the selected rows using the ROWID and commits after each

 * set of $commitsize rows. (Use with care, there is no rollback)

 */

 $conn = OCILogon($user, $password);

 $stmt = OCIParse($conn,"select rowid from $table $where");

 $rowid = OCINewDescriptor($conn,OCI_D_ROWID);

 OCIDefineByName($stmt,"ROWID",&$rowid);

 OCIExecute($stmt);

 while (OCIFetch($stmt)) {

 $nrows = OCIRowCount($stmt);

 $delete = OCIParse($conn,"delete from $table where ROWID = :rid");

 OCIBindByName($delete,":rid",&$rowid,-1,OCI_B_ROWID);

 OCIExecute($delete);

 print "$nrows\n";

 if (($nrows % $commitsize) == 0) {

 OCICommit($conn);

 }

 }

 $nrows = OCIRowCount($stmt);

 print "$nrows deleted...\n";

 OCIFreeStatement($stmt);

 OCILogoff($conn);

?>

<?php

 /* This script demonstrates file upload to LOB columns

 * The formfield used for this example looks like this

 * <form action="upload.php3" method="post" enctype="multipart/form-data">

 * <input type="file" name="lob_upload">

 * ...

 */

 if(!isset($lob_upload) || $lob_upload == 'none'){

?>

<form action="upload.php3" method="post" enctype="multipart/form-data">

Upload file: <input type="file" name="lob_upload">

<input type="submit" value="Upload"> - <input type="reset">

</form>

<?php

 } else {

 // $lob_upload contains the temporary filename of the uploaded file

 $conn = OCILogon($user, $password);

 $lob = OCINewDescriptor($conn, OCI_D_LOB);

 $stmt = OCIParse($conn,"insert into $table (id, the_blob)

 values(my_seq.NEXTVAL, EMPTY_BLOB()) returning the_blob into :the_blob");

 OCIBindByName($stmt, ':the_blob', &$lob, -1, OCI_B_BLOB);

 OCIExecute($stmt);

 if($lob->savefile($lob_upload)){

 OCICommit($conn);

 echo "Blob successfully uploaded\n";

 }else{

 echo "Couldn't upload Blob\n";

 }

 OCIFreeDescriptor($lob);

 OCIFreeStatement($stmt);

 OCILogoff($conn);

 }

?>

OCIRowCount (PHP3 >= 3.0.7, PHP4)

Gets the number of affected rows

int OCIRowCount (int statement)

 OCIRowCount() returns the number of rows affected for eg update-statements. This funtions will not tell you the number of rows that a select will return!

Example 1. OCIRowCount

<?php

 print "<HTML><PRE>";

 $conn = OCILogon("scott","tiger");

 $stmt = OCIParse($conn,"create table emp2 as select * from emp");

 OCIExecute($stmt);

 print OCIRowCount($stmt) . " rows inserted.
";

 OCIFreeStatement($stmt);

 $stmt = OCIParse($conn,"delete from emp2");

 OCIExecute($stmt);

 print OCIRowCount($stmt) . " rows deleted.
";

 OCICommit($conn);

 OCIFreeStatement($stmt);

 $stmt = OCIParse($conn,"drop table emp2");

 OCIExecute($stmt);

 OCIFreeStatement($stmt);

 OCILogOff($conn);

 print "</PRE></HTML>";

?>

OCINumCols (PHP3 >= 3.0.4, PHP4)

Return the number of result columns in a statement

int OCINumCols (int stmt)

 OCINumCols() returns the number of columns in a statement

Example 1. OCINumCols

<?php

 print "<HTML><PRE>\n";

 $conn = OCILogon("scott", "tiger");

 $stmt = OCIParse($conn,"select * from emp");

 OCIExecute($stmt);

 while (OCIFetch($stmt)) {

 print "\n";

 $ncols = OCINumCols($stmt);

 for ($i = 1; $i <= $ncols; $i++) {

 $column_name = OCIColumnName($stmt,$i);

 $column_value = OCIResult($stmt,$i);

 print $column_name . ': ' . $column_value . "\n";

 }

 print "\n";

 }

 OCIFreeStatement($stmt);

 OCILogoff($conn);

 print "</PRE>";

 print "</HTML>\n";

?>

OCIResult (PHP3 >= 3.0.4, PHP4)

Returns coulumn value for fetched row

mixed OCIResult (int statement, mixed column)

 OCIResult() returns the data for column column in the current row (see OCIFetch()).OCIResult() will return everything as strings except for abstract types (ROWIDs, LOBs and FILEs).

OCIFetch (PHP3 >= 3.0.4, PHP4)

Fetches the next row into result-buffer

int OCIFetch (int statement)

 OCIFetch() fetches the next row (for SELECT statements) into the internal result-buffer.

OCIFetchInto (PHP3 >= 3.0.4, PHP4)

Fetches the next row into result-array

int OCIFetchInto (int stmt, array &result [, int mode])

 OCIFetchInto() fetches the next row (for SELECT statements) into the result array. OCIFetchInto() will overwrite the previous content of result. By default result will contain a one-based array of all columns that are not NULL.

 The mode parameter allows you to change the default behaviour. You can specify more than one flag by simply addig them up (eg OCI_ASSOC+OCI_RETURN_NULLS). The known flags are:

	OCI_ASSOC Return an associative array.

	OCI_NUM Return an numbered array starting with one. (DEFAULT)

	OCI_RETURN_NULLS Return empty columns.

	OCI_RETURN_LOBS Return the value of a LOB instead of the desxriptor.

OCIFetchStatement (PHP3 >= 3.0.8, PHP4)

Fetch all rows of result data into an array.

int OCIFetchStatement (int stmt, array &variable)

 OCIFetchStatement() fetches all the rows from a result into a user-defined array. OCIFetchStatement() returns the number of rows fetched.

Example 1. OCIFetchStatement

<?php

/* OCIFetchStatement example mbritton@verinet.com (990624) */

$conn = OCILogon("scott","tiger");

$stmt = OCIParse($conn,"select * from emp");

OCIExecute($stmt);

$nrows = OCIFetchStatement($stmt,$results);

if ($nrows > 0) {

 print "<TABLE BORDER=\"1\">\n";

 print "<TR>\n";

 while (list($key, $val) = each($results)) {

 print "<TH>$key</TH>\n";

 }

 print "</TR>\n";

 for ($i = 0; $i < $nrows; $i++) {

 reset($results);

 print "<TR>\n";

 while ($column = each($results)) {

 $data = $column['value'];

 print "<TD>$data[$i]</TD>\n";

 }

 print "</TR>\n";

 }

 print "</TABLE>\n";

} else {

 echo "No data found
\n";

}

print "$nrows Records Selected
\n";

OCIFreeStatement($stmt);

OCILogoff($conn);

?>

OCIColumnIsNULL (PHP3 >= 3.0.4, PHP4)

test whether a result column is NULL

int OCIColumnIsNULL (int stmt, mixed column)

 OCIColumnIsNULL() returns true if the returned column column in the result from the statement stmt is NULL. You can either use the column-number (1-Based) or the column-name for the col parameter.

OCIColumnSize (PHP3 >= 3.0.4, PHP4)

return result column size

int OCIColumnSize (int stmt, mixed column)

 OCIColumnSize() returns the size of the column as given by Oracle. You can either use the column-number (1-Based) or the column-name for the col parameter.

Example 1. OCIColumnSize

<?php

 print "<HTML><PRE>\n";

 $conn = OCILogon("scott", "tiger");

 $stmt = OCIParse($conn,"select * from emp");

 OCIExecute($stmt);

 print "<TABLE BORDER=\"1\">";

 print "<TR>";

 print "<TH>Name</TH>";

 print "<TH>Type</TH>";

 print "<TH>Length</TH>";

 print "</TR>";

 $ncols = OCINumCols($stmt);

 for ($i = 1; $i <= $ncols; $i++) {

 $column_name = OCIColumnName($stmt,$i);

 $column_type = OCIColumnType($stmt,$i);

 $column_size = OCIColumnSize($stmt,$i);

 print "<TR>";

 print "<TD>$column_name</TD>";

 print "<TD>$column_type</TD>";

 print "<TD>$column_size</TD>";

 print "</TR>";

 }

 print "</TABLE>";

 OCIFreeStatement($stmt);

 OCILogoff($conn);

 print "</PRE>";

 print "</HTML>\n";

?>

 See also OCINumCols(), OCIColumnName(), and OCIColumnSize().

OCIServerVersion (PHP3 >= 3.0.4, PHP4)

Return a string containing server version information.

string OCIServerVersion (int conn)

Example 1. OCIServerVersion

<?php

 $conn = OCILogon("scott","tiger");

 print "Server Version: " . OCIServerVersion($conn);

 OCILogOff($conn);

?>

OCIStatementType (PHP3 >= 3.0.5, PHP4)

Return the type of an OCI statement.

string OCIStatementType (int stmt)

 OCIStatementType() returns on of the following values:

1.
 "SELECT"

2.
 "UPDATE"

3.
 "DELETE"

4.
 "INSERT"

5.
 "CREATE"

6.
 "DROP"

7.
 "ALTER"

8.
 "BEGIN"

9.
 "DECLARE"

10.
 "UNKNOWN"

Example 1. Code examples

<?php

 print "<HTML><PRE>";

 $conn = OCILogon("scott","tiger");

 $sql = "delete from emp where deptno = 10";

 $stmt = OCIParse($conn,$sql);

 if (OCIStatementType($stmt) == "DELETE") {

 die "You are not allowed to delete from this table
";

 }

 OCILogoff($conn);

 print "</PRE></HTML>";

?>

OCINewCursor (PHP3 >= 3.0.8, PHP4)

return a new cursor (Statement-Handle) - use this to bind ref-cursors!

int OCINewCursor (int conn)

 OCINewCursor() allocates a new statement handle on the specified connection.

Example 1. Using a REF CURSOR from a stored procedure

<?php

// suppose your stored procedure info.output returns a ref cursor in :data

$conn = OCILogon("scott","tiger");

$curs = OCINewCursor($conn);

$stmt = OCIParse($conn,"begin info.output(:data); end;");

ocibindbyname($stmt,"data",&$curs,-1,OCI_B_CURSOR);

ociexecute($stmt);

ociexecute($curs);

while (OCIFetchInto($curs,&$data)) {

 var_dump($data);

}

OCIFreeCursor($stmt);

OCIFreeStatement($curs);

OCILogoff($conn);

?>

Example 2. Using a REF CURSOR in a select statement

<?php

print "<HTML><BODY>";

$conn = OCILogon("scott","tiger");

$count_cursor = "CURSOR(select count(empno) num_emps from emp " .

 "where emp.deptno = dept.deptno) as EMPCNT from dept";

$stmt = OCIParse($conn,"select deptno,dname,$count_cursor");

ociexecute($stmt);

print "<TABLE BORDER=\"1\">";

print "<TR>";

print "<TH>DEPT NAME</TH>";

print "<TH>DEPT #</TH>";

print "<TH># EMPLOYEES</TH>";

print "</TR>";

while (OCIFetchInto($stmt,&$data,OCI_ASSOC)) {

 print "<TR>";

 $dname = $data["DNAME"];

 $deptno = $data["DEPTNO"];

 print "<TD>$dname</TD>";

 print "<TD>$deptno</TD>";

 ociexecute($data["EMPCNT"]);

 while (OCIFetchInto($data["EMPCNT"],&$subdata,OCI_ASSOC)) {

 $num_emps = $subdata["NUM_EMPS"];

 print "<TD>$num_emps</TD>";

 }

 print "</TR>";

}

print "</TABLE>";

print "</BODY></HTML>";

OCIFreeStatement($stmt);

OCILogoff($conn);

?>

OCIFreeStatement (PHP3 >= 3.0.5, PHP4)

Free all resources associated with a statement.

int OCIFreeStatement (int stmt)

 OCIFreeStatement() returns true if successful, or false if unsuccessful.

OCIFreeCursor (PHP3 >= 3.0.8, PHP4)

Free all resources associated with a cursor.

int OCIFreeCursor (int stmt)

 OCIFreeCursor() returns true if successful, or false if unsuccessful.

OCIColumnName (PHP3 >= 3.0.4, PHP4)

Returns the name of a column.

string OCIColumnName (int stmt, int col)

 OCIColumnName() returns the name of the column corresponding to the column number (1-based) that is passed in.

Example 1. OCIColumnName

<?php

 print "<HTML><PRE>\n";

 $conn = OCILogon("scott", "tiger");

 $stmt = OCIParse($conn,"select * from emp");

 OCIExecute($stmt);

 print "<TABLE BORDER=\"1\">";

 print "<TR>";

 print "<TH>Name</TH>";

 print "<TH>Type</TH>";

 print "<TH>Length</TH>";

 print "</TR>";

 $ncols = OCINumCols($stmt);

 for ($i = 1; $i <= $ncols; $i++) {

 $column_name = OCIColumnName($stmt,$i);

 $column_type = OCIColumnType($stmt,$i);

 $column_size = OCIColumnSize($stmt,$i);

 print "<TR>";

 print "<TD>$column_name</TD>";

 print "<TD>$column_type</TD>";

 print "<TD>$column_size</TD>";

 print "</TR>";

 }

 OCIFreeStatement($stmt);

 OCILogoff($conn);

 print "</PRE>";

 print "</HTML>\n";

?>

 See also OCINumCols(), OCIColumnType(), and OCIColumnSize().

OCIColumnType (PHP3 >= 3.0.4, PHP4)

Returns the data type of a column.

mixed OCIColumnType (int stmt, int col)

 OCIColumnType() returns the data type of the column corresponding to the column number (1-based) that is passed in.

Example 1. OCIColumnType

<?php

 print "<HTML><PRE>\n";

 $conn = OCILogon("scott", "tiger");

 $stmt = OCIParse($conn,"select * from emp");

 OCIExecute($stmt);

 print "<TABLE BORDER=\"1\">";

 print "<TR>";

 print "<TH>Name</TH>";

 print "<TH>Type</TH>";

 print "<TH>Length</TH>";

 print "</TR>";

 $ncols = OCINumCols($stmt);

 for ($i = 1; $i <= $ncols; $i++) {

 $column_name = OCIColumnName($stmt,$i);

 $column_type = OCIColumnType($stmt,$i);

 $column_size = OCIColumnSize($stmt,$i);

 print "<TR>";

 print "<TD>$column_name</TD>";

 print "<TD>$column_type</TD>";

 print "<TD>$column_size</TD>";

 print "</TR>";

 }

 OCIFreeStatement($stmt);

 OCILogoff($conn);

 print "</PRE>";

 print "</HTML>\n";

?>

 See also OCINumCols(), OCIColumnName(), and OCIColumnSize().

OCIParse (PHP3 >= 3.0.4, PHP4)

Parse a query and return a statement

int OCIParse (int conn, strint query)

 OCIParse() parses the query using conn. It returns the statement identity if the query is valid, false if not. The query can be any valid SQL statement.

OCIError (PHP3 >= 3.0.7, PHP4)

Return the last error of stmt|conn|global. If no error happened returns false.

array OCIError ([int stmt|conn|global])

 OCIError() returns the last error found. If the optional stmt|conn|global is not provided, the last error encountered is returned. If no error is found, OCIError() returns false. OCIError() returns the error as an associative array. In this array, code consists the oracle error code and message the oracle errorstring.

OCIInternalDebug (PHP3 >= 3.0.4, PHP4)

 Enables or disables internal debug output. By default it is disabled

void OCIInternalDebug (int onoff)

 OCIInternalDebug() enables internal debug output. Set onoff to 0 to turn debug output off, 1 to turn it on.

XLV. PDF functions

 You can use the PDF functions in PHP to create PDF files if you have the PDF library by Thomas Merz (available at http://www.pdflib.com/pdflib/index.html; you will also need the JPEG library (ftp://ftp.uu.net/graphics/jpeg/) and the TIFF library (http://www.libtiff.org/) to compile this. These two libs also quite often make problems when configuring php. Follow the messages of configure to fix possible problems. If you use pdflib 2.01 check how the lib was installed. There should be file or link libpdf.so. Version 2.01 just creates a lib with the name libpdf2.01.so which cannot be found when linking the test programm in configure. You will have to create a symbolic link from libpdf.so to libpdf2.01.so.).

 Version 2.20 of pdflib has introduced more changes to its API and support for chinese and japanese fonts. This unfortunately causes some changes of the pdf module of php4 (not php3). If you use pdflib 2.20 handle the in memory generation of PDF documents with care. Until pdflib 3.0 is released it might be unstable. The encoding parameter of pdf_set_font() has changed to a string. This means that instead of e.g. 4 you have to use 'winansi'.

 If you use pdflib 2.30 the pdf_set_text_matrix() will have gone. It is not supported any more. In general it is a good advise to consult the release notes of the used version of pdflib for possible changes.

 Since version 3.0 of pdflib you should configure pdflib with the option --enable-shared-pdflib.

 Any version of PHP4 after March, 9th 2000 do not support versions of pdflib older than 3.0. PHP3 on the other hand should not be used with version newer than 2.01.

 Please consult the excellent documentation for pdflib shipped with the source distribution of pdflib. It provides a very good overview of what pdflib capable of doing. Most of the functions in pdflib and the PHP module have the same name. The parameters are also identical. You should also understand some of the concepts of PDF or Postscript to efficiently use this module. All lengths and coordinates are measured in Postscript points. There are generally 72 PostScript points to an inch, but this depends on the output resolution.

 There is another PHP module for pdf document creation based on FastIO's (http://www.fastio.com/). ClibPDF. It has a slightly different API. Check the ClibPDF functions section for details.

 Currently all versions of pdflib are supported. It is recommended that you use the newest version since it has more features and fixes some problems which required a patch for the old version. Unfortunately, the changes of the pdflib API in 2.x compared to 0.6 have been so severe that even some PHP functions had to be altered. Here is a list of changes:

•
 The Info structure does not exist anymore. Therefore the function pdf_get_info() is obsolete and the functions pdf_set_info_creator(), pdf_set_info_title(), pdf_set_info_author(), pdf_set_info_subject() and pdf_set_info_keywords() do not take the info structure as the first parameter but the pdf document. This also means that the pdf document must be opened before these functions can be called. The above functions can and should also be replaced by pdf_set_info()

•
 The way a new document is opened has changed. The function pdf_open() takes only one parameter which is the file handle of a file opened with fopen().

 There were some more changes with the release 2.01 of pdflib which should be covered by PHP. Some functions are not required anymore (e.g. pdf_put_image()). You will get a warning so don't be shocked.

 The pdf module introduces two new types of variables (if pdflib 2.x is used it is only one new type). They are called pdfdoc and pdfinfo (pdfinfo is not existent if pdflib 2.x is used. pdfdoc is a pointer to a pdf document and almost all functions need it as its first parameter. pdfinfo contains meta data about the PDF document. It has to be set before pdf_open() is called.

Note: The following is only true for pdflib 0.6. Read the pdflib manual for newer version

 In order to output text into a PDF document you will need to provide the afm file for each font. Afm files contain font metrics for a Postscript font. By default these afm files are searched for in a directory named 'fonts' relative to the directory where the PHP script is located. (Again, this was true for pdflib 0.6, newer versions do not not neccessarily need the afm files.)

 Most of the functions are fairly easy to use. The most difficult part is probably to create a very simple pdf document at all. The following example should help to get started. It uses the PHP functions for pdflib 0.6. It creates the file test.pdf with one page. The page contains the text "Times-Roman" in an outlined 30pt font. The text is also underlined.

Example 1. Creating a PDF document with pdflib 0.6

<?php

$fp = fopen("test.pdf", "w");

$info = PDF_get_info();

pdf_set_info_author($info, "Uwe Steinmann");

PDF_set_info_title($info, "Test for PHP wrapper of PDFlib 0.6");

PDF_set_info_author($info, "Name of Author");

pdf_set_info_creator($info, "See Author");

pdf_set_info_subject($info, "Testing");

$pdf = PDF_open($fp, $info);

PDF_begin_page($pdf, 595, 842);

PDF_add_outline($pdf, "Page 1");

pdf_set_font($pdf, "Times-Roman", 30, 4);

pdf_set_text_rendering($pdf, 1);

PDF_show_xy($pdf, "Times Roman outlined", 50, 750);

pdf_moveto($pdf, 50, 740);

pdf_lineto($pdf, 330, 740);

pdf_stroke($pdf);

PDF_end_page($pdf);

PDF_close($pdf);

fclose($fp);

echo "finished";

?>

 The PHP script getpdf.php3 just outputs the pdf document.

<?php

$fp = fopen("test.pdf", "r");

header("Content-type: application/pdf");

fpassthru($fp);

fclose($fp);

?>

 Doing the same with pdflib 2.x looks like the following:

Example 2. Creating a PDF document with pdflib 2.x

<?php

$fp = fopen("test.pdf", "w");

$pdf = PDF_open($fp);

pdf_set_info_author($pdf, "Uwe Steinmann");

PDF_set_info_title($pdf, "Test for PHP wrapper of PDFlib 2.0");

PDF_set_info_author($pdf, "Name of Author");

pdf_set_info_creator($pdf, "See Author");

pdf_set_info_subject($pdf, "Testing");

PDF_begin_page($pdf, 595, 842);

PDF_add_outline($pdf, "Page 1");

pdf_set_font($pdf, "Times-Roman", 30, 4);

pdf_set_text_rendering($pdf, 1);

PDF_show_xy($pdf, "Times Roman outlined", 50, 750);

pdf_moveto($pdf, 50, 740);

pdf_lineto($pdf, 330, 740);

pdf_stroke($pdf);

PDF_end_page($pdf);

PDF_close($pdf);

fclose($fp);

echo "finished";

?>

 The PHP script getpdf.php3 is the same as above.

 The pdflib distribution contains a more complex example which creates a serious of pages with an analog clock. This example converted into PHP using pdflib 2.x looks as the following (you can see the same example in the documentation for the clibpdf module):

Example 3. pdfclock example from pdflib 2.x distribution

<?php

$pdffilename = "clock.pdf";

$radius = 200;

$margin = 20;

$pagecount = 40;

$fp = fopen($pdffilename, "w");

$pdf = pdf_open($fp);

pdf_set_info_creator($pdf, "pdf_clock.php3");

pdf_set_info_author($pdf, "Uwe Steinmann");

pdf_set_info_title($pdf, "Analog Clock");

while($pagecount-- > 0) {

 pdf_begin_page($pdf, 2 * ($radius + $margin), 2 * ($radius + $margin));

 pdf_set_transition($pdf, 4); /* wipe */

 pdf_set_duration($pdf, 0.5);

 pdf_translate($pdf, $radius + $margin, $radius + $margin);

 pdf_save($pdf);

 pdf_setrgbcolor($pdf, 0.0, 0.0, 1.0);

 /* minute strokes */

 pdf_setlinewidth($pdf, 2.0);

 for ($alpha = 0; $alpha < 360; $alpha += 6) {

 pdf_rotate($pdf, 6.0);

 pdf_moveto($pdf, $radius, 0.0);

 pdf_lineto($pdf, $radius-$margin/3, 0.0);

 pdf_stroke($pdf);

 }

 pdf_restore($pdf);

 pdf_save($pdf);

 /* 5 minute strokes */

 pdf_setlinewidth($pdf, 3.0);

 for ($alpha = 0; $alpha < 360; $alpha += 30) {

 pdf_rotate($pdf, 30.0);

 pdf_moveto($pdf, $radius, 0.0);

 pdf_lineto($pdf, $radius-$margin, 0.0);

 pdf_stroke($pdf);

 }

 $ltime = getdate();

 /* draw hour hand */

 pdf_save($pdf);

 pdf_rotate($pdf,-(($ltime['minutes']/60.0)+$ltime['hours']-3.0)*30.0);

 pdf_moveto($pdf, -$radius/10, -$radius/20);

 pdf_lineto($pdf, $radius/2, 0.0);

 pdf_lineto($pdf, -$radius/10, $radius/20);

 pdf_closepath($pdf);

 pdf_fill($pdf);

 pdf_restore($pdf);

 /* draw minute hand */

 pdf_save($pdf);

 pdf_rotate($pdf,-(($ltime['seconds']/60.0)+$ltime['minutes']-15.0)*6.0);

 pdf_moveto($pdf, -$radius/10, -$radius/20);

 pdf_lineto($pdf, $radius * 0.8, 0.0);

 pdf_lineto($pdf, -$radius/10, $radius/20);

 pdf_closepath($pdf);

 pdf_fill($pdf);

 pdf_restore($pdf);

 /* draw second hand */

 pdf_setrgbcolor($pdf, 1.0, 0.0, 0.0);

 pdf_setlinewidth($pdf, 2);

 pdf_save($pdf);

 pdf_rotate($pdf, -(($ltime['seconds'] - 15.0) * 6.0));

 pdf_moveto($pdf, -$radius/5, 0.0);

 pdf_lineto($pdf, $radius, 0.0);

 pdf_stroke($pdf);

 pdf_restore($pdf);

 /* draw little circle at center */

 pdf_circle($pdf, 0, 0, $radius/30);

 pdf_fill($pdf);

 pdf_restore($pdf);

 pdf_end_page($pdf);

}

$pdf = pdf_close($pdf);

fclose($fp);

echo "finished";

?>

 The PHP script getpdf.php3 just outputs the pdf document.

<?php

$fp = fopen($filename, "r");

header("Content-type: application/pdf");

fpassthru($fp);

fclose($fp);

?>

PDF_get_info (PHP3 >= 3.0.6, PHP4 <= 4.0b1)

Returns an empty info structure for a pdf document

info pdf_get_info (string filename)

 The PDF_get_info() function returns an empty info structure for the pdf document. It should be filled with appropriate information like the author, subject etc. of the document.

Note: This functions is not available if pdflib 2.x support is activated.

 See also PDF_set_info_creator(), PDF_set_info_author(), PDF_set_info_keywords(), PDF_set_info_title(), PDF_set_info_subject().

PDF_set_info (PHP4 >= 4.0.1)

Fills a field of the document information

void pdf_set_info (int pdf document, string fieldname, string value)

 The PDF_set_info() function sets an information field of a pdf document. Possible values for the fieldname are 'Subject', 'Title', 'Creator', 'Author', 'Keywords' and one user-defined name. It can be called before beginning a page.

Example 1. Setting document information

<?php

$fd = fopen("test.pdf", "w");

$pdfdoc = pdf_open($fd);

pdf_set_info($pdfdoc, "Author", "Uwe Steinmann");

pdf_set_info($pdfdoc, "Creator", "Uwe Steinmann");

pdf_set_info($pdfdoc, "Title", "Testing Info Fields");

pdf_set_info($pdfdoc, "Subject", "Test");

pdf_set_info($pdfdoc, "Keywords", "Test, Fields");

pdf_set_info($pdfdoc, "CustomField", "What ever makes sense");

pdf_begin_page($pdfdoc, 595, 842);

pdf_end_page($pdfdoc);

pdf_close($pdfdoc);

?>

Note: This function replaces PDF_set_info_keywords(), PDF_set_info_title(), PDF_set_info_subject(), PDF_set_info_creator(), PDF_set_info_sybject().

PDF_open (PHP3 >= 3.0.6, PHP4)

Opens a new pdf document

int pdf_open (int file, int info)

 The PDF_open() function opens a new pdf document. The corresponding file has to be opened with fopen() and the file descriptor passed as argument file. info is the info structure that has to be created with pdf_get_info(). The info structure will be deleted within this function.

Note: The return value is needed as the first parameter in all other functions writing to the pdf document.

Note: This function does not allow the second parameter if pdflib 2.0 support is activated.

 See also fopen(), PDF_get_info(), PDF_close().

PDF_close (PHP3 >= 3.0.6, PHP4)

Closes a pdf document

void pdf_close (int pdf document)

 The PDF_close() function closes the pdf document.

Note: Due to an unclean implementation of the pdflib 0.6 the internal closing of the document also closes the file. This should not be done because pdflib did not open the file, but expects an already open file when PDF_open() is called. Consequently it shouldn't close the file. In order to fix this just take out line 190 of the file p_basic.c in the pdflib 0.6 source distribution until the next release of pdflib will fix this.

Note: This function works properly without any patches to pdflib if pdflib 2.0 support is activated.

 See also PDF_open(), fclose().

PDF_begin_page (PHP3 >= 3.0.6, PHP4)

Starts new page

void pdf_begin_page (int pdf document, double width, double height)

 The PDF_begin_page() function starts a new page with height height and width width. In order to create a valid document you must call this function and PDF_end_page().

 See also PDF_end_page().

PDF_end_page (PHP3 >= 3.0.6, PHP4)

Ends a page

void pdf_end_page (int pdf document)

 The PDF_end_page() function ends a page. Once a page is ended it cannot be modified anymore.

 See also PDF_begin_page().

PDF_show (PHP3 >= 3.0.6, PHP4)

Output text at current position

void pdf_show (int pdf document, string text)

 The PDF_show() function outputs the string text at the current position using the current font.

 See also PDF_show_xy(), PDF_set_text_pos(), PDF_set_font().

PDF_show_boxed (PHP4 >= 4.0RC1)

Output text in a box

int pdf_show_boxed (int pdf document, string text, double x-coor, double y-coor, double width, double height, string mode)

 The PDF_show_boxed() function outputs the string text in a box with its lower left position at (x-coor, y-coor). The boxes dimension is height by width. The parameter mode determines how the text is type set. If width and height are zero, the mode can be "left", "right" or "center". If width or height is unequal zero it can also be "justify" and "fulljustify".

Returns the number of characters that could not be processed because they did not fit into the box.

 See also PDF_show(), PDF_show_xy().

PDF_show_xy (PHP3 >= 3.0.6, PHP4)

Output text at given position

void pdf_show_xy (int pdf document, string text, double x-coor, double y-coor)

 The PDF_show_xy() function outputs the string text at position (x-coor, y-coor).

 See also PDF_show().

PDF_set_font (PHP3 >= 3.0.6, PHP4)

Selects a font face and size

void pdf_set_font (int pdf document, string font name, double size, string encoding [, int embed])

 The PDF_set_font() function sets the current font face, font size and encoding. If you use pdflib 0.6 you will need to provide the Adobe Font Metrics (afm-files) for the font in the font path (default is ./fonts). If you use php3 or a version of pdflib older than 2.20 the fourth parameter encoding can take the following values: 0 = builtin, 1 = pdfdoc, 2 = macroman, 3 = macexpert, 4 = winansi. An encoding greater than 4 and less than 0 will default to winansi. winansi is often a good choice. If you use php4 and a version of pdflib >= 2.20 the encoding parameter has changed to a string. Use 'winansi', 'builtin', 'host', 'macroman' etc. instead. If the last parameter is set to 1 the font is embedded into the pdf document otherwise it is not. To embed a font is usually a good idea if the font is not widely spread and you cannot ensure that the person watching your document has access on fonts in the document. I font is only embedded once even if you call PDF_set_font() several times.

Note: This function has to be called after PDF_begin_page() in order to create a valid pdf document.

Note: If you reference a font in a .upr file make sure the name in the afm file and the font name are the same. Otherwise, the font will be embedded several times (Thanks to Paul Haddon for finding this.)

PDF_set_leading (PHP3 >= 3.0.6, PHP4)

Sets distance between text lines

void pdf_set_leading (int pdf document, double distance)

 The PDF_set_leading() function sets the distance between text lines. This will be used if text is output by PDF_continue_text().

 See also PDF_continue_text().

PDF_set_parameter (PHP4 >= 4.0RC1)

Sets certain parameters

void pdf_set_parameter (int pdf document, string name, string value)

 The PDF_set_parameter() function sets several parameters of pdflib which are of the type string.

 See also PDF_get_value(), PDF_set_value(), PDF_get_parameter().

PDF_get_parameter (PHP4 >= 4.0.1)

Gets certain parameters

string pdf_get_parameter (int pdf document, string name, double modifier)

 The PDF_get_parameter() function gets several parameters of pdflib which are of the type string. The function parameter modifier characterizes the parameter to get. If the modifier is not needed it has to be 0.

 See also PDF_get_value(), PDF_set_value(), PDF_set_parameter().

PDF_set_value (PHP4 >= 4.0.1)

Sets certain numerical value

void pdf_set_value (int pdf document, string name, double value)

 The PDF_set_value() function sets several numerical parameters of pdflib.

 See also PDF_get_value(), PDF_get_parameter(), PDF_set_parameter().

PDF_get_value (PHP4 >= 4.0.1)

Gets certain numerical value

double pdf_get_value (int pdf document, string name, double modifier)

 The PDF_get_value() function gets several numerical parameters of pdflib. The function parameter modifier characterizes the parameter to get. If the modifier is not needed it has to be 0.

 See also PDF_set_value(), PDF_get_parameter(), PDF_set_parameter().

PDF_set_text_rendering (PHP3 >= 3.0.6, PHP4)

Determines how text is rendered

void pdf_set_text_rendering (int pdf document, int mode)

 The PDF_set_text_rendering() function determines how text is rendered. The possible values for mode are 0=fill text, 1=stroke text, 2=fill and stroke text, 3=invisible, 4=fill text and add it to cliping path, 5=stroke text and add it to clipping path, 6=fill and stroke text and add it to cliping path, 7=add it to clipping path.

PDF_set_horiz_scaling (PHP3 >= 3.0.6, PHP4)

Sets horizontal scaling of text

void pdf_set_horiz_scaling (int pdf document, double scale)

 The PDF_set_horiz_scaling() function sets the horizontal scaling to scale percent.

PDF_set_text_rise (PHP3 >= 3.0.6, PHP4)

Sets the text rise

void pdf_set_text_rise (int pdf document, double rise)

 The PDF_set_text_rise() function sets the text rising to rise points.

PDF_set_text_matrix (PHP3 >= 3.0.6, PHP4 <= 4.0b4)

Sets the text matrix

void pdf_set_text_matrix (int pdf document, array matrix)

 The PDF_set_text_matrix() function sets a matrix which describes a transformation applied on the current text font. The matrix has to passed as an array with six elements.

PDF_set_text_pos (PHP3 >= 3.0.6, PHP4)

Sets text position

void pdf_set_text_pos (int pdf document, double x-coor, double y-coor)

 The PDF_set_text_pos() function sets the position of text for the next pdf_show() function call.

 See also PDF_show(), PDF_show_xy().

PDF_set_char_spacing (PHP3 >= 3.0.6, PHP4)

Sets character spacing

void pdf_set_char_spacing (int pdf document, double space)

 The PDF_set_char_spacing() function sets the spacing between characters.

 See also PDF_set_word_spacing(), PDF_set_leading().

PDF_set_word_spacing (PHP3 >= 3.0.6, PHP4)

Sets spacing between words

void pdf_set_word_spacing (int pdf document, double space)

 The PDF_set_word_spacing() function sets the spacing between words.

 See also PDF_set_char_spacing(), PDF_set_leading().

PDF_skew (PHP4 >= 4.0RC1)

Skews the coordinate system

void pdf_skew (int pdf document, double alpha, double beta)

 The PDF_skew() function skew the coordinate system by alpha (x) and beta (y) degrees. alpha and beta may not be 90 or 270 degrees.

PDF_continue_text (PHP3 >= 3.0.6, PHP4)

Outputs text in next line

void pdf_continue_text (int pdf document, string text)

 The PDF_continue_text() function outputs the string in text in the next line. The distance between the lines can be set with PDF_set_leading().

 See also PDF_show_xy(), PDF_set_leading(), PDF_set_text_pos().

PDF_stringwidth (PHP3 >= 3.0.6, PHP4)

Returns width of text using current font

double pdf_stringwidth (int pdf document, string text)

 The PDF_stringwidth() function returns the width of the string in text by using the current font. It requires a font to be set before with PDF_set_font().

 See also PDF_set_font().

PDF_save (PHP3 >= 3.0.6, PHP4)

Saves the current environment

void pdf_save (int pdf document)

 The PDF_save() function saves the current environment. It works like the postscript command gsave. Very useful if you want to translate or rotate an object without effecting other objects. PDF_save() should always be followed by PDF_restore() to restore the environment before PDF_save().

 See also PDF_restore().

PDF_restore (PHP3 >= 3.0.6, PHP4)

Restores formerly saved environment

void pdf_restore (int pdf document)

 The PDF_restore() function restores the environment saved with PDF_save(). It works like the postscript command grestore.

Example 1. Save and Restore

<?php PDF_save($pdf);

// do all kinds of rotations, transformations, ...

PDF_restore($pdf) ?>

 See also PDF_save().

PDF_translate (PHP3 >= 3.0.6, PHP4)

Sets origin of coordinate system

void pdf_translate (int pdf document, double x-coor, double y-coor)

 The PDF_translate() function sets the origin of coordinate system to the point (x-coor, y-coor) relativ the current origin. The following example draws a line from (0, 0) to (200, 200) relative to the initial coordinate system. You have to set the current point after PDF_translate() and before you start drawing more objects.

Example 1. Translation

<?php PDF_moveto($pdf, 0, 0);

PDF_lineto($pdf, 100, 100);

PDF_stroke($pdf);

PDF_translate($pdf, 100, 100);

PDF_moveto($pdf, 0, 0);

PDF_lineto($pdf, 100, 100);

PDF_stroke($pdf);

?>

PDF_scale (PHP3 >= 3.0.6, PHP4)

Sets scaling

void pdf_scale (int pdf document, double x-scale, double y-scale)

 The PDF_scale() function sets the scaling factor in both directions. The following example scales x and y direction by 72. The following line will therefore be drawn one inch in both directions.

Example 1. Scaling

<?php PDF_scale($pdf, 72.0, 72.0);

PDF_lineto($pdf, 1, 1);

PDF_stroke($pdf);

?>

PDF_rotate (PHP3 >= 3.0.6, PHP4)

Sets rotation

void pdf_rotate (int pdf document, double angle)

 The PDF_rotate() function sets the rotation in degress to angle.

PDF_setflat (PHP3 >= 3.0.6, PHP4)

Sets flatness

void pdf_setflat (int pdf document, double value)

 The PDF_setflat() function sets the flatness to a value between 0 and 100.

PDF_setlinejoin (PHP3 >= 3.0.6, PHP4)

Sets linejoin parameter

void pdf_setlinejoin (int pdf document, long value)

 The PDF_setlinejoin() function sets the linejoin parameter between a value of 0 and 2.

PDF_setlinecap (PHP3 >= 3.0.6, PHP4)

Sets linecap parameter

void pdf_setlinecap (int pdf document, int value)

 The PDF_setlinecap() function sets the linecap parameter between a value of 0 and 2.

PDF_setmiterlimit (PHP3 >= 3.0.6, PHP4)

Sets miter limit

void pdf_setmiterlimit (int pdf document, double value)

 The PDF_setmiterlimit() function sets the miter limit to a value greater of equal than 1.

PDF_setlinewidth (PHP3 >= 3.0.6, PHP4)

Sets line width

void pdf_setlinewidth (int pdf document, double width)

 The PDF_setlinewidth() function sets the line width to width.

PDF_setdash (PHP3 >= 3.0.6, PHP4)

Sets dash pattern

void pdf_setdash (int pdf document, double white, double black)

 The PDF_setdash() function sets the dash pattern white white points and black black points. If both are 0 a solid line is set.

PDF_moveto (PHP3 >= 3.0.6, PHP4)

Sets current point

void pdf_moveto (int pdf document, double x-coor, double y-coor)

 The PDF_moveto() function sets the current point to the coordinates x-coor and y-coor.

PDF_curveto (PHP3 >= 3.0.6, PHP4)

Draws a curve

void pdf_curveto (int pdf document, double x1, double y1, double x2, double y2, double x3, double y3)

 The PDF_curveto() function draws a Bezier curve from the current point to the point (x3, y3) using (x1, y1) and (x2, y2) as control points.

 See also PDF_moveto(), PDF_lineto(), PDF_stroke().

PDF_lineto (PHP3 >= 3.0.6, PHP4)

Draws a line

void pdf_lineto (int pdf document, double x-coor, double y-coor)

 The PDF_lineto() function draws a line from the current point to the point with coordinates (x-coor, y-coor).

 See also PDF_moveto(), PDF_curveto(), PDF_stroke().

PDF_circle (PHP3 >= 3.0.6, PHP4)

Draws a circle

void pdf_circle (int pdf document, double x-coor, double y-coor, double radius)

 The PDF_circle() function draws a circle with center at point (x-coor, y-coor) and radius radius.

 See also PDF_arc(), PDF_stroke().

PDF_arc (PHP3 >= 3.0.6, PHP4)

Draws an arc

void pdf_arc (int pdf document, double x-coor, double y-coor, double radius, double start, double end)

 The PDF_arc() function draws an arc with center at point (x-coor, y-coor) and radius radius, starting at angle start and ending at angle end.

 See also PDF_circle(), PDF_stroke().

PDF_rect (PHP3 >= 3.0.6, PHP4)

Draws a rectangle

void pdf_rect (int pdf document, double x-coor, double y-coor, double width, double height)

 The PDF_rect() function draws a rectangle with its lower left corner at point (x-coor, y-coor). This width is set to widgth. This height is set to height.

 See also PDF_stroke().

PDF_closepath (PHP3 >= 3.0.6, PHP4)

Closes path

void pdf_closepath (int pdf document)

 The PDF_closepath() function closes the current path. This means, it draws a line from current point to the point where the first line was started. Many functions like PDF_moveto(), PDF_circle() and PDF_rect() start a new path.

PDF_stroke (PHP3 >= 3.0.6, PHP4)

Draws line along path

void pdf_stroke (int pdf document)

 The PDF_stroke() function draws a line along current path. The current path is the sum of all line drawing. Without this function the line would not be drawn.

 See also PDF_closepath(), PDF_closepath_stroke().

PDF_closepath_stroke (PHP3 >= 3.0.6, PHP4)

Closes path and draws line along path

void pdf_closepath_stroke (int pdf document)

 The PDF_closepath_stroke() function is a combination of PDF_closepath() and PDF_stroke(). It also clears the path.

 See also PDF_closepath(), PDF_stroke().

PDF_fill (PHP3 >= 3.0.6, PHP4)

Fills current path

void pdf_fill (int pdf document)

 The PDF_fill() function fills the interior of the current path with the current fill color.

 See also PDF_closepath(), PDF_stroke(), PDF_setgray_fill(), PDF_setgray(), PDF_setrgbcolor_fill(), PDF_setrgbcolor().

PDF_fill_stroke (PHP3 >= 3.0.6, PHP4)

Fills and strokes current path

void pdf_fill_stroke (int pdf document)

 The PDF_fill_stroke() function fills the interior of the current path with the current fill color and draws current path.

 See also PDF_closepath(), PDF_stroke(), PDF_fill(), PDF_setgray_fill(), PDF_setgray(), PDF_setrgbcolor_fill(), PDF_setrgbcolor().

PDF_closepath_fill_stroke (PHP3 >= 3.0.6, PHP4)

Closes, fills and strokes current path

void pdf_closepath_fill_stroke (int pdf document)

 The PDF_closepath_fill_stroke() function closes, fills the interior of the current path with the current fill color and draws current path.

 See also PDF_closepath(), PDF_stroke(), PDF_fill(), PDF_setgray_fill(), PDF_setgray(), PDF_setrgbcolor_fill(), PDF_setrgbcolor().

PDF_endpath (PHP3 >= 3.0.6, PHP4)

Ends current path

void pdf_endpath (int pdf document)

 The PDF_endpath() function ends the current path but does not close it.

 See also PDF_closepath().

PDF_clip (PHP3 >= 3.0.6, PHP4)

Clips to current path

void pdf_clip (int pdf document)

 The PDF_clip() function clips all drawing to the current path.

PDF_setgray_fill (PHP3 >= 3.0.6, PHP4)

Sets filling color to gray value

void pdf_setgray_fill (int pdf document, double gray value)

 The PDF_setgray_fill() function sets the current gray value to fill a path.

 See also PDF_setrgbcolor_fill().

PDF_setgray_stroke (PHP3 >= 3.0.6, PHP4)

Sets drawing color to gray value

void pdf_setgray_stroke (int pdf document, double gray value)

 The PDF_setgray_stroke() function sets the current drawing color to the given gray value.

 See also PDF_setrgbcolor_stroke().

PDF_setgray (PHP3 >= 3.0.6, PHP4)

Sets drawing and filling color to gray value

void pdf_setgray (int pdf document, double gray value)

 The PDF_setgray() function sets the current drawing and filling color to the given gray value.

 See also PDF_setrgbcolor_stroke(), PDF_setrgbcolor_fill().

PDF_setrgbcolor_fill (PHP3 >= 3.0.6, PHP4)

Sets filling color to rgb color value

void pdf_setrgbcolor_fill (int pdf document, double red value, double green value, double blue value)

 The PDF_setrgbcolor_fill() function sets the current rgb color value to fill a path.

 See also PDF_setrgbcolor_fill().

PDF_setrgbcolor_stroke (PHP3 >= 3.0.6, PHP4)

Sets drawing color to rgb color value

void pdf_setrgbcolor_stroke (int pdf document, double red value, double green value, double blue value)

 The PDF_setrgbcolor_stroke() function sets the current drawing color to the given rgb color value.

 See also PDF_setrgbcolor_stroke().

PDF_setrgbcolor (PHP3 >= 3.0.6, PHP4)

Sets drawing and filling color to rgb color value

void pdf_setrgbcolor (int pdf document, double red value, double green value, double blue value)

 The PDF_setrgbcolor_stroke() function sets the current drawing and filling color to the given rgb color value.

 See also PDF_setrgbcolor_stroke(), PDF_setrgbcolor_fill().

PDF_add_outline (PHP3 >= 3.0.6, PHP4)

Adds bookmark for current page

int pdf_add_outline (int pdf document, string text [, int parent [, int open]])

 The PDF_add_outline() function adds a bookmark with text text that points to the current page. The bookmark is inserted as a child of parent and is by default open if open is not 0. The return value is an identifier for the bookmark which can be used as a parent for other bookmarks. Therefore you can build up hierarchies of bookmarks.

 Unfortunately pdflib does not make a copy of the string, which forces PHP to allocate the memory. Currently this piece of memory is not been freed by any PDF function but it will be taken care of by the PHP memory manager.

PDF_set_transition (PHP3 >= 3.0.6, PHP4)

Sets transition between pages

void pdf_set_transition (int pdf document, int transition)

 The PDF_set_transition() function set the transition between following pages. The value of transition can be

	 0 for none,

	 1 for two lines sweeping across the screen reveal the page,

	 2 for multiple lines sweeping across the screen reveal the page,

	 3 for a box reveals the page,

	 4 for a single line sweeping across the screen reveals the page,

	 5 for the old page dissolves to reveal the page,

	 6 for the dissolve effect moves from one screen edge to another,

	 7 for the old page is simply replaced by the new page (default)

 See also PDF_set_duration().

PDF_set_duration (PHP3 >= 3.0.6, PHP4)

Sets duration between pages

void pdf_set_duration (int pdf document, double duration)

 The PDF_set_duration() function set the duration between following pages in seconds.

 See also PDF_set_transition().

PDF_open_gif (PHP3 >= 3.0.7, PHP4 >= 4.0b2)

Opens a GIF image

int pdf_open_gif (int pdf document, string filename)

 The PDF_open_gif() function opens an image stored in the file with the name filename. The format of the image has to be gif. The function returns a pdf image identifier.

Example 1. Including a gif image

<?php

$im = PDF_open_gif($pdf, "test.gif");

pdf_place_image($pdf, $im, 100, 100, 1);

pdf_close_image($pdf, $im);

?>

 See also PDF_close_image(), PDF_open_jpeg(), PDF_open_memory_image(), PDF_execute_image(), PDF_place_image(), PDF_put_image().

PDF_open_png (PHP4 >= 4.0RC2)

 Opens a PNG image

int pdf_open_png (int pdf, string png_file)

 The PDF_open_png() function opens an image stored in the file with the name filename. The format of the image has to be png. The function returns a pdf image identifier.

Example 1. Including a PNG image

<?php

$im = PDF_open_png ($pdf, "test.png");

pdf_place_image ($pdf, $im, 100, 100, 1);

pdf_close_image ($pdf, $im);

?>

 See also PDF_close_image(), PDF_open_jpeg(), PDF_open_gif(), PDF_open_memory_image(), PDF_execute_image(), PDF_place_image(), PDF_put_image().

PDF_open_memory_image (PHP3 >= 3.0.10, PHP4 >= 4.0b2)

Opens an image created with PHP's image functions

int pdf_open_memory_image (int pdf document, int image)

 The PDF_open_memory_image() function takes an image created with the PHP's image functions and makes it available for the pdf document. The function returns a pdf image identifier.

Example 1. Including a memory image

<?php

$im = ImageCreate(100, 100);

$col = ImageColorAllocate($im, 80, 45, 190);

ImageFill($im, 10, 10, $col);

$pim = PDF_open_memory_image($pdf, $im);

ImageDestroy($im);

pdf_place_image($pdf, $pim, 100, 100, 1);

pdf_close_image($pdf, $pim);

?>

 See also PDF_close_image(), PDF_open_jpeg(), PDF_open_gif(), PDF_open_png() PDF_execute_image(), PDF_place_image(), PDF_put_image().

PDF_open_jpeg (PHP3 >= 3.0.7, PHP4 >= 4.0b2)

Opens a JPEG image

int pdf_open_jpeg (int pdf document, string filename)

 The PDF_open_jpeg() function opens an image stored in the file with the name filename. The format of the image has to be jpeg. The function returns a pdf image identifier.

 See also PDF_close_image(), PDF_open_gif(), PDF_open_png(), PDF_open_memory_image(), PDF_execute_image(), PDF_place_image(), PDF_put_image().

PDF_close_image (PHP3 >= 3.0.7, PHP4 >= 4.0b2)

Closes an image

void pdf_close_image (int image)

 The PDF_close_image() function closes an image which has been opened with any of the PDF_open_xxx() functions.

 See also PDF_open_jpeg(), PDF_open_gif(), PDF_open_memory_image().

PDF_place_image (PHP3 >= 3.0.7, PHP4 >= 4.0b2)

Places an image on the page

void pdf_place_image (int pdf document, int image, double x-coor, double y-coor, double scale)

 The PDF_place_image() function places an image on the page at postion (x-coor, x-coor). The image can be scaled at the same time.

 See also PDF_put_image().

PDF_put_image (PHP3 >= 3.0.7, 4.0b2 - 4.0b4 only)

Stores an image in the PDF for later use

void pdf_put_image (int pdf document, int image)

 The PDF_put_image() function places an image in the PDF file without showing it. The stored image can be displayed with the PDF_execute_image() function as many times as needed. This is useful when using the same image multiple times in order to keep the file size small. Using PDF_put_image() and PDF_execute_image() is highly recommended for larger images (several kb) if they show up more than once in the document.

Note: This function has become meaningless with version 2.01 of pdflib. It will just output a warning.

 See also PDF_put_image(), PDF_place_image(), PDF_execute_image().

PDF_execute_image (PHP3 >= 3.0.7, 4.0b2 - 4.0b4 only)

Places a stored image on the page

void pdf_execute_image (int pdf document, int image, double x-coor, double y-coor, double scale)

 The PDF_execute_image() function displays an image that has been put in the PDF file with the PDF_put_image() function on the current page at the given coordinates.

 The image can be scaled while displaying it. A scale of 1.0 will show the image in the original size.

Note: This function has become meaningless with version 2.01 of pdflib. It will just output a warning.

Example 1. Multiple show of an image

<?php

$im = ImageCreate(100, 100);

$col1 = ImageColorAllocate($im, 80, 45, 190);

ImageFill($im, 10, 10, $col1);

$pim = PDF_open_memory_image($pdf, $im);

pdf_put_image($pdf, $pim);

pdf_execute_image($pdf, $pim, 100, 100, 1);

pdf_execute_image($pdf, $pim, 200, 200, 2);

pdf_close_image($pdf, $pim);

?>

pdf_add_annotation (PHP3 >= 3.0.12, PHP4 >= 4.0b2)

Adds annotation

void pdf_add_annotation (int pdf document, double llx, double lly, double urx, double ury, string title, string content)

 The pdf_add_annotation() adds a note with the lower left corner at (llx, lly) and the upper right corner at (urx, ury).

PDF_set_border_style (PHP3 >= 3.0.12, PHP4 >= 4.0b2)

Sets style of border around links and annotations

void pdf_set_border_style (int pdf document, string style, double width)

 The PDF_set_border_style() function sets the style and width of the suroundig box of links and annotations. The parameter style can be 'solid' or 'dashed'.

 See also PDF_set_border_color(), PDF_set_border_dash().

PDF_set_border_color (PHP3 >= 3.0.12, PHP4 >= 4.0b2)

Sets color of border around links and annotations

void pdf_set_border_color (int pdf document, double red, double green, double blue)

 The PDF_set_border_color() function sets the color of the suroundig box of links and annotations. The three color components have to have a value between 0.0 and 1.0.

 See also PDF_set_border_style(), PDF_set_border_dash().

PDF_set_border_dash (PHP4 >= 4.0.1)

Sets dash style of border around links and annotations

void pdf_set_border_dash (int pdf document, double black, double white)

 The PDF_set_border_dash() function sets the lenght of black and white areas of a dashed line of the suroundig box of links and annotations.

 See also PDF_set_border_style(), PDF_set_border_color().

XLVI. Verisign Payflow Pro functions

 This extension allows you to process credit cards and other financial transactions using Verisign Payment Services, formerly known as Signio (http://www.verisign.com/payment/).

 These functions are only available if PHP has been compiled with the --with-pfpro[=DIR] option. You will require the appropriate SDK for your platform, which may be downloaded from within the manager interface (https://testmanager.signio.com/Downloads/Downloads_secure.htm) once you have registered.

 Once you have downloaded the SDK you should copy the files from the lib directory of the distribution. Copy the header file pfpro.h to /usr/local/include and the library file libpfpro.so to /usr/local/lib.

 When using these functions, you may omit calls to pfpro_init() and pfpro_cleanup() as this extension will do so automatically if required. However the functions are still available in case you are processing a number of transactions and require fine control over the library. You may perform any number of transactions using pfpro_process() between the two.

 These functions have been added in PHP 4.0.2.

Note: These functions only provide a link to Verisign Payment Services. Be sure to read the Payflow Pro Developers Guide for full details of the required parameters.

pfpro_init (PHP4 CVS only)

Initialises the Payflow Pro library

void pfpro_init(void);

 pfpro_init() is used to initialise the Payflow Pro library. You may omit this call, in which case this extension will automatically call pfpro_init() before the first transaction.

 See also pfpro_cleanup().

pfpro_cleanup (PHP4 CVS only)

Shuts down the Payflow Pro library

void pfpro_cleanup(void);

 pfpro_cleanup() is used to shutdown the Payflow Pro library cleanly. It should be called after you have processed any transactions and before the end of your script. However you may omit this call, in which case this extension will automatically call pfpro_cleanup() after your script terminates.

 See also pfpro_init().

pfpro_process (PHP4 CVS only)

Process a transaction with Payflow Pro

array pfpro_process (array parameters [, string address [, int port [, int timeout [, string proxy address [, int proxy port [, string proxy logon [, string proxy password]]]]]]])

 Returns: An associative array containing the response

 pfpro_process() processes a transaction with Payflow Pro. The first parameter is an associative array containing keys and values that will be encoded and passed to the processor.

 The second parameter is optional and specifies the host to connect to. By default this is "test.signio.com", so you will certainly want to change this to "connect.signio.com" in order to process live transactions.

 The third parameter specifies the port to connect on. It defaults to 443, the standard SSL port.

 The fourth parameter specifies the timeout to be used, in seconds. This defaults to 30 seconds. Note that this timeout appears to only begin once a link to the processor has been established and so your script could potentially continue for a very long time in the event of DNS or network problems.

 The fifth parameter, if required, specifies the hostname of your SSL proxy. The sixth parameter specifies the port to use.

 The seventh and eighth parameters specify the logon identity and password to use on the proxy.

 The function returns an associative array of the keys and values in the response.

Note: Be sure to read the Payflow Pro Developers Guide for full details of the required parameters.

Example 1. Payflow Pro example

<?php

pfpro_init();

$transaction = array(USER => 'mylogin',

 PWD => 'mypassword',

 TRXTYPE => 'S',

 TENDER => 'C',

 AMT => 1.50,

 ACCT => '4111111111111111',

 EXPDATE => '0904'

);

$response = pfpro_process($transaction);

if (!$response) {

 die("Couldn't establish link to Verisign.\n");

}

echo "Verisign response code was ".$response[RESULT];

echo ", which means: ".$response[RESPMSG]."\n";

echo "\nThe transaction request: ";

print_r($transaction);

echo "\nThe response: ";

print_r($response);

pfpro_cleanup();

?>

pfpro_process_raw (PHP4 CVS only)

Process a raw transaction with Payflow Pro

string pfpro_process_raw (string parameters [, string address [, int port [, int timeout [, string proxy address [, int proxy port [, string proxy logon [, string proxy password]]]]]]])

 Returns: A string containing the response.

 pfpro_process_raw() processes a raw transaction string with Payflow Pro. You should really use pfpro_process() instead, as the encoding rules of these transactions are non-standard.

 The first parameter in this case is a string containing the raw transaction request. All other parameters are the same as with pfpro_process(). The return value is a string containing the raw response.

Note: Be sure to read the Payflow Pro Developers Guide for full details of the required parameters and encoding rules. You would be well advised to use pfpro_process() instead.

Example 1. Payflow Pro raw example

<?php

pfpro_init();

$response = pfpro_process("USER=mylogin&PWD[5]=m&ndy&TRXTYPE=S&TENDER=C&AMT=1.50&ACCT=4111111111111111&EXPDATE=0904");

if (!$response) {

 die("Couldn't establish link to Verisign.\n");

}

echo "Verisign raw response was ".$response;

pfpro_cleanup();

?>

pfpro_version (PHP4 CVS only)

Returns the version of the Payflow Pro software

string pfpro_version(void);

 pfpro_version() returns the version string of the Payflow Pro library. At the time of writing, this was L211.

XLVII. PHP options & information

assert (PHP4 >= 4.0b4)

Checks if assertion is false

int assert (string|bool assertion)

 assert() will check the given assertion and take appropriate action if its result is false.

 If the assertion is given as a string it will be evaluated as PHP code by assert(). The advantages of a string assertion are less overhead when assertion checking is off and messages containing the assertion expression when an assertion failes.

 Assertion should be used as a debugging feature only. You may use them for sanity-checks that test for conditions that should always be true and that indicate some programming errors if not or to check for the presence of certain features like extension functions or certain system limits and features.

 Assertions should not be used for normal runtime operations like input parameter checks. As a rule of thumb your code should always be able to work correct if assertion checking is not activated.

 The behavior of assert() may be configured by assert_options() or by .ini-settings described in that functions manual page.

assert-options (PHP4 >= 4.0b4)

Set/get the various assert flags

mixed assert_options (int what [, mixed value])

 Using assert_options() you may set the various assert() control options or just query their current settings.

Table 1. assert options

	option
	ini-parameter
	default
	description

	ASSERT_ACTIVE
	assert.active
	1
	enable assert() evaluation

	ASSERT_WARNING
	assert.warning
	1
	issue a PHP warning for each failed assertion

	ASSERT_BAIL
	assert.bail
	0
	terminate execution on failed assertions

	ASSERT_QUIET_EVAL
	assert.quiet_eval
	0
	 disable error_reporting during assertion expression evaluation

	ASSERT_CALLBACK
	assert_callback
	(null)
	user function to call on failed assertions

 assert_options() will return the original setting of any option or false on errors.

error_log (PHP3 , PHP4)

send an error message somewhere

int error_log (string message, int message_type [, string destination [, string extra_headers]])

 Sends an error message to the web server's error log, a TCP port or to a file. The first parameter, message, is the error message that should be logged. The second parameter, message_type says where the message should go:

Table 1. error_log() log types

	0
	 message is sent to PHP's system logger, using the Operating System's system logging mechanism or a file, depending on what the error_log configuration directive is set to.

	1
	 message is sent by email to the address in the destination parameter. This is the only message type where the fourth parameter, extra_headers is used. This message type uses the same internal function as Mail() does.

	2
	 message is sent through the PHP debugging connection. This option is only available if remote debugging has been enabled. In this case, the destination parameter specifies the host name or IP address and optionally, port number, of the socket receiving the debug information.

	3
	 message is appended to the file destination.

Example 1. error_log() examples

// Send notification through the server log if we can not

// connect to the database.

if (!Ora_Logon($username, $password)) {

 error_log("Oracle database not available!", 0);

}

// Notify administrator by email if we run out of FOO

if (!($foo = allocate_new_foo()) {

 error_log ("Big trouble, we're all out of FOOs!", 1,

 "operator@mydomain.com");

}

// other ways of calling error_log():

error_log ("You messed up!", 2, "127.0.0.1:7000");

error_log ("You messed up!", 2, "loghost");

error_log ("You messed up!", 3, "/var/tmp/my-errors.log");

error_reporting (PHP3 , PHP4)

set which PHP errors are reported

int error_reporting ([int level])

 Sets PHP's error reporting level and returns the old level. The error reporting level is a bitmask of the following values (follow the links for the internal values to get their meanings):

Table 1. error_reporting() bit values

	value
	internal name

	1
	 E_ERROR

	2
	 E_WARNING

	4
	 E_PARSE

	8
	 E_NOTICE

	16
	 E_CORE_ERROR

	32
	 E_CORE_WARNING

extension_loaded (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

find out whether an extension is loaded

bool extension_loaded (string name)

 Returns true if the extension identified by name is loaded. You can see the names of various extensions by using phpinfo().

 See also phpinfo().

Note: This function was added in 3.0.10.

getenv (PHP3 , PHP4)

Get the value of an environment variable

string getenv (string varname)

 Returns the value of the environment variable varname, or false on an error.

$ip = getenv ("REMOTE_ADDR"); // get the ip number of the user

 You can see a list of all the environmental variables by using phpinfo(). You can find out what many of them mean by taking a look at the CGI specification (http://hoohoo.ncsa.uiuc.edu/cgi/), specifically the page on environmental variables (http://hoohoo.ncsa.uiuc.edu/cgi/env.html).

get_cfg_var (PHP3 , PHP4)

 Get the value of a PHP configuration option.

string get_cfg_var (string varname)

 Returns the current value of the PHP configuration variable specified by varname, or false if an error occurs.

 It will not return configuration information set when the PHP was compiled, or read from an Apache configuration file (using the php3_configuration_option directives).

 To check whether the system is using a configuration file, try retrieving the value of the cfg_file_path configuration setting. If this is available, a configuration file is being used.

get_current_user (PHP3 , PHP4)

 Get the name of the owner of the current PHP script.

string get_current_user (void)

 Returns the name of the owner of the current PHP script.

 See also getmyuid(), getmypid(), getmyinode(), and getlastmod().

get_magic_quotes_gpc (PHP3 >= 3.0.6, PHP4)

 Get the current active configuration setting of magic quotes gpc.

long get_magic_quotes_gpc (void)

 Returns the current active configuration setting of magic_quotes_gpc. (0 for off, 1 for on).

 See also get_magic_quotes_runtime(), set_magic_quotes_runtime().

get_magic_quotes_runtime (PHP3 >= 3.0.6, PHP4)

 Get the current active configuration setting of magic_quotes_runtime.

long get_magic_quotes_runtime (void)

 Returns the current active configuration setting of magic_quotes_runtime. (0 for off, 1 for on).

 See also get_magic_quotes_gpc(), set_magic_quotes_runtime().

getlastmod (PHP3 , PHP4)

Get time of last page modification.

int getlastmod (void)

 Returns the time of the last modification of the current page. The value returned is a Unix timestamp, suitable for feeding to date(). Returns false on error.

Example 1. getlastmod() example

// outputs e.g. 'Last modified: March 04 1998 20:43:59.'

echo "Last modified: ".date ("F d Y H:i:s.", getlastmod());

 See alse date(), getmyuid(), get_current_user(), getmyinode(), and getmypid().

getmyinode (PHP3 , PHP4)

Get the inode of the current script.

int getmyinode (void)

 Returns the current script's inode, or false on error.

 See also getmyuid(), get_current_user(), getmypid(), and getlastmod().

Note: This function is not supported on Windows systems.

getmypid (PHP3 , PHP4)

Get PHP's process ID.

int getmypid (void)

 Returns the current PHP process ID, or false on error.

 Note that when running as a server module, separate invocations of the script are not guaranteed to have distinct pids.

 See also getmyuid(), get_current_user(), getmyinode(), and getlastmod().

getmyuid (PHP3 , PHP4)

Get PHP script owner's UID.

int getmyuid (void)

 Returns the user ID of the current script, or false on error.

 See also getmypid(), get_current_user(), getmyinode(), and getlastmod().

getrusage (PHP3 >= 3.0.7, PHP4 >= 4.0b2)

Get the current resource usages.

array getrusage ([int who])

 This is an interface to getrusage(2). It returns an associative array containing the data returned from the system call. If who is 1, getrusage will be called with RUSAGE_CHILDREN.

 All entries are accessible by using their documented field names.

Example 1. Getrusage Example

$dat = getrusage();

echo $dat["ru_nswap"]; # number of swaps

echo $dat["ru_majflt"]; # number of page faults

echo $dat["ru_utime.tv_sec"]; # user time used (seconds)

echo $dat["ru_utime.tv_usec"]; # user time used (microseconds)

 See your system's man page for more details.

phpcredits (PHP4)

Prints out the credits for PHP.

void phpcredits (int flag)

 This function prints out the credits listing the PHP developers, modules, etc. It generates the appropriate HTML codes to insert the information in a page. A parameter indicating what will be printed (a pre-defined constant flag, see table below) needs to be passed. For example to print the general credits, you will use somewhere in your code:

...

phpversion(CREDITS_GENERAL);

...

 And if you want to print the core developers and the documentation group, in a page of its own, you will use:

<?php

 phpcredits(CREDITS_GROUP + CREDITS_DOCS + CREDITS_FULLPAGE);

?>

 And if you feel like embedding all the credits in your page, then code like the one below will do it:

<html>

 <head>

 <title>My credits page</title>

 </head>

 <body>

 <?php

 // some code of your own

 phpversion(CREDITS_ALL + CREDITS_FULLPAGE);

 // some more code

 ?>

 </body>

</html>

Table 1. Pre-defined phpcredits() flags

	name
	description

	CREDITS_ALL
	 All the credits, equivalent to using: CREDITS_DOCS + CREDITS_GENERAL + CREDITS_GROUP + CREDITS_MODULES + CREDITS_FULLPAGE. It generates a complete stand-alone HTML page with the appropriate tags.

	CREDITS_DOCS
	The credits for the documentation team

	CREDITS_FULLPAGE
	 Usually used in combination with the other flags. Indicates that the a complete stand-alone HTML page needs to be printed including the information indicated by the other flags.

	CREDITS_GENERAL
	 General credits: Language design and concept, PHP 4.0 authors and SAPI module.

	CREDITS_GROUP
	A list of the core developers

	CREDITS_MODULES
	A list of the extension modules for PHP, and their authors

	CREDITS_SAPI
	This flag is defined but, as of PHP 4.0.1pl2, it is not used

 See also phpinfo(). phpversion(), php_logo_guid()

phpinfo (PHP3 , PHP4)

Output lots of PHP information.

int phpinfo (void)

 Outputs a large amount of information about the current state of PHP. This includes information about PHP compilation options and extensions, the PHP version, server information and environment (if compiled as a module), the PHP environment, OS version information, paths, master and local values of configuration options, HTTP headers, and the GNU Public License.

 See also phpversion(), phpcredits(), php_logo_guid()

phpversion (PHP3 , PHP4)

Get the current PHP version.

string phpversion (void)

 Returns a string containing the version of the currently running PHP parser.

Example 1. phpversion() example

// prints e.g. 'Current PHP version: 3.0rel-dev'

echo "Current PHP version: ".phpversion();

 See also phpinfo(), phpcredits(), php_logo_guid()

php_logo_guid (PHP4 >= 4.0b4)

Get the logo guid

string php_logo_guid (void)

Note: This funcionality was added in PHP4 Beta 4.

 See also phpinfo(). phpversion(), phpcredits()

php_sapi_name (PHP4 >= 4.0.1)

 Returns the type of interface between web server and PHP

string php_sapi_name (void)

 Php_sapi_name() returns a lowercase string which describes the type of interface between web server and PHP (Server API, SAPI). In CGI PHP, this string is "cgi", in mod_php for Apache, this string is "apache" and so on.

Example 1. Php_sapi_name() Example

$inter_type = php_sapi_name();

if ($inter_type == "cgi")

 print "You are using CGI PHP\n";

else

 print "You are not using CGI PHP\n";

putenv (PHP3 , PHP4)

Set the value of an environment variable.

void putenv (string setting)

 Adds setting to the server environment.

Example 1. Setting an Environment Variable

putenv ("UNIQID=$uniqid");

set_magic_quotes_runtime (PHP3 >= 3.0.6, PHP4)

 Set the current active configuration setting of magic_quotes_runtime.

long set_magic_quotes_runtime (int new_setting)

 Set the current active configuration setting of magic_quotes_runtime. (0 for off, 1 for on)

 See also get_magic_quotes_gpc(), get_magic_quotes_runtime().

set_time_limit (PHP3 , PHP4)

limit the maximum execution time

void set_time_limit (int seconds)

 Set the number of seconds a script is allowed to run. If this is reached, the script returns a fatal error. The default limit is 30 seconds or, if it exists, the max_execution_time value defined in the configuration file. If seconds is set to zero, no time limit is imposed.

 When called, set_time_limit() restarts the timeout counter from zero. In other words, if the timeout is the default 30 seconds, and 25 seconds into script execution a call such as set_time_limit(20) is made, the script will run for a total of 45 seconds before timing out.

 Note that set_time_limit() has no effect when PHP is running in safe mode. There is no workaround other than turning off safe mode or changing the time limit in the configuration file.

zend_logo_guid (PHP4 >= 4.0b4)

Get the zend guid

string zend_logo_guid (void)

Note: This funcionality was added in PHP4 Beta 4.

get_loaded_extensions (PHP4 >= 4.0b4)

 Returns an array with the names of all modules compiled and loaded

array get_loaded_extensions (void)

 This function returns the names of all the modules compiled and loaded in the PHP interpreter.

 For example the line below

print_r (get_loadedextensions());

 will print a list like:

Array

(

 [0] => xml

 [1] => wddx

 [2] => standard

 [3] => session

 [4] => posix

 [5] => pgsql

 [6] => pcre

 [7] => gd

 [8] => ftp

 [9] => db

 [10] => Calendar

 [11] => bcmath

)

 See also: get_extension_funcs().

get_extension_funcs (PHP4 >= 4.0b4)

 Returns an array with the names of the functions of a module

array get_extension_funcs (string module_name)

 This function returns the names of all the functions defined in the module indicated by module_name.

 For example the lines below

print_r (get_extension_funcs ("xml"));

print_r (get_extension_funcs ("gd"));

 will print a list of the functions in the modules xml and gd respectively.

 See also: get_loaded_extensions()

get_required_files (PHP4 >= 4.0RC2)

 Returns an array with the names of the files require_once()'d in a script

array get_required_files (void)

 This function returns an associtative array of the names of all the files that have been loaded into a script using require_once(). The indexes of the array are the file names as used in the require_once() without the ".php" extension.

 The example below

Example 1. Printing the required and included files

<?php

require_once ("local.php");

require_once ("../inc/global.php");

for ($i=1; $i<5; $i++)

 include "util".$i."php";

echo "Required_once files\n";

print_r (get_required_files());

echo "Included_once files\n";

print_r (get_included_files());

?>

 will generate the following output:

Required_once files

Array

(

 [local] => local.php

 [../inc/global] => /full/path/to/inc/global.php

)

Included_once files

Array

(

 [util1] => util1.php

 [util2] => util2.php

 [util3] => util3.php

 [util4] => util4.php

)

Note: As of PHP 4.0.1pl2 this function assumes that the required_once files end in the extension ".php", other extensions do not work.

 See also: require_once(), include_once(), get_included_files()

get_included_files (PHP4 >= 4.0RC1)

 Returns an array with the names of the files include_once()'d in a script

array get_included_files (void)

 This function returns an associtative array of the names of all the files that have been loaded into a script using include_once(). The indexes of the array are the file names as used in the include_once() without the ".php" extension.

Note: As of PHP 4.0.1pl2 this function assumes that the include_once files end in the extension ".php", other extensions do not work.

 See also: require_once(), include_once(), get_required_files()

XLVIII. POSIX functions

 This module contains an interface to those functions defined in the IEEE 1003.1 (POSIX.1) standards document which are not accessible through other means. POSIX.1 for example defined the open(), read(), write() and close() functions, too, which traditionally have been part of PHP3 for a long time. Some more system specific functions have not been available before, though, and this module tries to remedy this by providing easy access to these functions.

posix_kill (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Send a signal to a process

bool posix_kill (int pid, int sig)

 Send the signal sig to the process with the process identifier pid. Returns FALSE, if unable to send the signal, TRUE otherwise.

 See also the kill(2) manual page of your POSIX system, which contains additional information about negative process identifiers, the special pid 0, the special pid -1, and the signal number 0.

posix_getpid (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

Return the current process identifier

int posix_getpid (void)

 Return the process identifier of the current process.

posix_getppid (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

Return the parent process identifier

int posix_getppid (void)

 Return the process identifier of the parent process of the current process.

posix_getuid (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

 Return the real user ID of the current process

int posix_getuid (void)

 Return the numeric real user ID of the current process. See also posix_getpwuid() for information on how to convert this into a useable username.

posix_geteuid (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

 Return the effective user ID of the current process

int posix_geteuid (void)

 Return the numeric effective user ID of the current process. See also posix_getpwuid() for information on how to convert this into a useable username.

posix_getgid (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

 Return the real group ID of the current process

int posix_getgid (void)

 Return the numeric real group ID of the current process. See also posix_getgrgid() for information on how to convert this into a useable group name.

posix_getegid (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

 Return the effective group ID of the current process

int posix_getegid (void)

 Return the numeric effective group ID of the current process. See also posix_getgrgid() for information on how to convert this into a useable group name.

posix_setuid (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Set the effective UID of the current process

bool posix_setuid (int uid)

 Set the real user ID of the current process. This is a privileged function and you need appropriate privileges (usually root) on your system to be able to perform this function.

 Returns TRUE on success, FALSE otherwise. See also posix_setgid().

posix_setgid (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Set the effective GID of the current process

bool posix_setgid (int gid)

 Set the real group ID of the current process. This is a privileged function and you need appropriate privileges (usually root) on your system to be able to perform this function. The appropriate order of function calls is posix_setgid() first, posix_setuid() last.

 Returns TRUE on success, FALSE otherwise.

posix_getgroups (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

 Return the group set of the current process

array posix_getgroups (void)

 Returns an array of integers containing the numeric group ids of the group set of the current process. See also posix_getgrgid() for information on how to convert this into useable group names.

posix_getlogin (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Return login name

string posix_getlogin (void)

 Returns the login name of the user owning the current process. See posix_getpwnam() for information how to get more information about this user.

posix_getpgrp (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

 Return the current process group identifier

int posix_getpgrp (void)

 Return the process group identifier of the current process. See POSIX.1 and the getpgrp(2) manual page on your POSIX system for more information on process groups.

posix_setsid (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Make the current process a session leader

int posix_setsid (void)

 Make the current process a session leader. See POSIX.1 and the setsid(2) manual page on your POSIX system for more informations on process groups and job control. Returns the session id.

posix_setpgid (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

set process group id for job control

int posix_setpgid (int pid, int pgid)

 Let the process pid join the process group pgid. See POSIX.1 and the setsid(2) manual page on your POSIX system for more informations on process groups and job control. Returns TRUE on success, FALSE otherwise.

posix_getpgid (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

Get process group id for job control

int posix_getpgid (int pid)

 Returns the process group identifier of the process pid.

 This is not a POSIX function, but is common on BSD and System V systems. If your system does not support this function at system level, this PHP function will always return FALSE.

posix_getsid (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

Get the current sid of the process

int posix_getsid (int pid)

 Return the sid of the process pid. If pid is 0, the sid of the current process is returned.

 This is not a POSIX function, but is common on System V systems. If your system does not support this function at system level, this PHP function will always return FALSE.

posix_uname (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

Get system name

array posix_uname (void)

 Returns a hash of strings with information about the system. The indices of the hash are

•
 sysname - operating system name (e.g. Linux)

•
 nodename - system name (e.g. valiant)

•
 release - operating system release (e.g. 2.2.10)

•
 version - operating system version (e.g. #4 Tue Jul 20 17:01:36 MEST 1999)

•
 machine - system architecture (e.g. i586)

 Posix requires that you must not make any assumptions about the format of the values, e.g. you cannot rely on three digit version numbers or anything else returned by this function.

posix_times (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Get process times

array posix_times (void)

 Returns a hash of strings with information about the current process CPU usage. The indices of the hash are

•
 ticks - the number of clock ticks that have elapsed since reboot.

•
 utime - user time used by the current process.

•
 stime - system time used by the current process.

•
 cutime - user time used by current process and children.

•
 cstime - system time used by current process and children.

posix_ctermid (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Get path name of controlling terminal

string posix_ctermid (void)

 Needs to be written.

posix_ttyname (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Determine terminal device name

string posix_ttyname (int fd)

 Needs to be written.

posix_isatty (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Determine if a file descriptor is an interactive terminal

bool posix_isatty (int fd)

 Needs to be written.

posix_getcwd (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Pathname of current directory

string posix_getcwd (void)

 Needs to be written ASAP.

posix_mkfifo (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

 Create a fifo special file (a named pipe)

bool posix_getcwd (string pathname, int mode)

 Needs to be written ASAP..

posix_getgrnam (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Return info about a group by name

array posix_getgrnam (string name)

 Needs to be written.

posix_getgrgid (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Return info about a group by group id

array posix_getgrgid (int gid)

 Needs to be written.

posix_getpwnam (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Return info about a user by username

array posix_getpwnam (string username)

 Returns an associative array containing information about a user referenced by an alphanumeric username, passed in the username parameter.

 The array elements returned are:

Table 1. The user information array

	Element
	Description

	name
	 The name element contains the username of the user. This is a short, usually less than 16 character "handle" of the user, not her real, full name. This should be the same as the username parameter used when calling the function, and hence redundant.

	passwd
	 The passwd element contains the user's password in an encrypted format. Often, for example on a system employing "shadow" passwords, an asterisk is returned instead.

	uid
	 User ID of the user in numeric form.

	gid
	 The group ID of the user. Use the function posix_getgrgid() to resolve the group name and a list of its members.

	gecos
	 GECOS is an obsolete term that refers to the finger information field on a Honeywell batch processing system. The field, however, lives on, and its contents have been formalized by POSIX. The field contains a comma separated list containing the user's full name, office phone, office number, and home phone number. On most systems, only the user's full name is available.

	dir
	 This element contains the absolute path to the home directory of the user.

	shell
	 The shell element contains the absolute path to the executable of the user's default shell.

posix_getpwuid (PHP3 >= 3.0.13, PHP4 >= 4.0b4)

Return info about a user by user id

array posix_getpwuid (int uid)

 Returns an associative array containing information about a user referenced by a numeric user ID, passed in the uid parameter.

 The array elements returned are:

Table 1. The user information array

	Element
	Description

	name
	 The name element contains the username of the user. This is a short, usually less than 16 character "handle" of the user, not her real, full name.

	passwd
	 The passwd element contains the user's password in an encrypted format. Often, for example on a system employing "shadow" passwords, an asterisk is returned instead.

	uid
	 User ID, should be the same as the uid parameter used when calling the function, and hence redundant.

	gid
	 The group ID of the user. Use the function posix_getgrgid() to resolve the group name and a list of its members.

	gecos
	 GECOS is an obsolete term that refers to the finger information field on a Honeywell batch processing system. The field, however, lives on, and its contents have been formalized by POSIX. The field contains a comma separated list containing the user's full name, office phone, office number, and home phone number. On most systems, only the user's full name is available.

	dir
	 This element contains the absolute path to the home directory of the user.

	shell
	 The shell element contains the absolute path to the executable of the user's default shell.

posix_getrlimit (PHP3 >= 3.0.10, PHP4 >= 4.0b4)

Return info about system ressource limits

array posix_getrlimit (void)

 Needs to be written ASAP.

XLIX. PostgreSQL functions

 Postgres, developed originally in the UC Berkeley Computer Science Department, pioneered many of the object-relational concepts now becoming available in some commercial databases. It provides SQL92/SQL3 language support, transaction integrity, and type extensibility. PostgreSQL is a public-domain, open source descendant of this original Berkeley code.

 PostgreSQL is available without cost. The current version is available at www.PostgreSQL.org (http://www.postgresql.org/).

 Since version 6.3 (03/02/1998) PostgreSQL uses unix domain sockets. A table is shown below describing these new connection possibilities. This socket will be found in /tmp/.s.PGSQL.5432. This option can be enabled with the '-i' flag to postmaster and it's meaning is: "listen on TCP/IP sockets as well as Unix domain sockets".

Table 1. Postmaster and PHP

	Postmaster
	PHP
	Status

	postmaster &
	pg_connect("", "", "", "", "dbname");
	OK

	postmaster -i &
	pg_connect("", "", "", "", "dbname");
	OK

	postmaster &
	pg_connect("localhost", "", "", "", "dbname");
	 Unable to connect to PostgreSQL server: connectDB() failed: Is the postmaster running and accepting TCP/IP (with -i) connection at 'localhost' on port '5432'? in /path/to/file.php3 on line 20.

	postmaster -i &
	pg_connect("localhost", "", "", "", "dbname");
	OK

 One can also establish a connection with the following command: $conn = pg_Connect("host=localhost port=5432 dbname=chris");

 To use the large object (lo) interface, it is necessary to enclose it within a transaction block. A transaction block starts with a begin and if the transaction was valid ends with commit or end. If the transaction fails the transaction should be closed with rollback or abort.

Example 1. Using Large Objects

<?php

 $database = pg_Connect ("", "", "", "", "jacarta");

 pg_exec ($database, "begin");

 $oid = pg_locreate ($database);

 echo ("$oid\n");

 $handle = pg_loopen ($database, $oid, "w");

 echo ("$handle\n");

 pg_lowrite ($handle, "gaga");

 pg_loclose ($handle);

 pg_exec ($database, "commit");

?>

pg_close (PHP3 , PHP4)

Close a PostgreSQL connection

bool pg_close (int connection)

 Returns false if connection is not a valid connection index, true otherwise. Closes down the connection to a PostgreSQL database associated with the given connection index.

Note: This isn't usually necessary, as non-persistent open links are automatically closed at the end of the script's execution.

 pg_close() will not close persistent links generated by pg_pconnect().

pg_cmdtuples (PHP3 , PHP4)

Returns number of affected tuples

int pg_cmdtuples (int result_id)

 Pg_cmdtuples() returns the number of tuples (instances) affected by INSERT, UPDATE, and DELETE queries. If no tuple is affected the function will return 0.

Example 1. Pg_cmdtuples()

<?php

$result = pg_exec ($conn, "INSERT INTO publisher VALUES ('Author')");

$cmdtuples = pg_cmdtuples ($result);

echo $cmdtuples . " <- cmdtuples affected.";

?>

pg_connect (PHP3 , PHP4)

Open a PostgreSQL connection

int pg_connect (string host, string port, string options, string tty, string dbname)

 Returns a connection index on success, or false if the connection could not be made. Opens a connection to a PostgreSQL database. Each of the arguments should be a quoted string, including the port number. The options and tty arguments are optional and can be left out. This function returns a connection index that is needed by other PostgreSQL functions. You can have multiple connections open at once.

 A connection can also established with the following command: $conn = pg_connect("dbname=marliese port=5432"); Other parameters besides dbname and port are host, tty, options, user, and password.

 See also pg_pconnect().

pg_dbname (PHP3 , PHP4)

Get the database name

string pg_dbname (int connection)

 Returns the name of the database that the given PostgreSQL connection index is connected to, or false if connection is not a valid connection index.

pg_errormessage (PHP3 , PHP4)

Get the error message string

string pg_errormessage (int connection)

 Returns a string containing the error message, false on failure. Details about the error probably cannot be retrieved using the pg_errormessage() function if an error occured on the last database action for which a valid connection exists, this function will return a string containing the error message generated by the backend server.

pg_exec (PHP3 , PHP4)

Execute a query

int pg_exec (int connection, string query)

 Returns a result index if query could be executed, false on failure or if connection is not a valid connection index. Details about the error can be retrieved using the pg_ErrorMessage() function if connection is valid. Sends an SQL statement to the PostgreSQL database specified by the connection index. The connection must be a valid index that was returned by pg_Connect(). The return value of this function is an index to be used to access the results from other PostgreSQL functions.

Note: PHP/FI returned 1 if the query was not expected to return data (inserts or updates, for example) and greater than 1 even on selects that did not return anything. No such assumption can be made in PHP.

pg_fetch_array (PHP3 >= 3.0.1, PHP4)

Fetch a row as an array

array pg_fetch_array (int result, int row [, int result_type])

 Returns: An array that corresponds to the fetched row, or false if there are no more rows.

 Pg_fetch_array() is an extended version of pg_fetch_row(). In addition to storing the data in the numeric indices of the result array, it also stores the data in associative indices, using the field names as keys.

 The third optional argument result_type in pg_fetch_array() is a constant and can take the following values: PGSQL_ASSOC, PGSQL_NUM, and PGSQL_BOTH.

Note: Result_type was added in PHP 4.0.

 An important thing to note is that using pg_fetch_array() is NOT significantly slower than using pg_fetch_row(), while it provides a significant added value.

 For further details, see also pg_fetch_row()

Example 1. PostgreSQL fetch array

<?php

$conn = pg_pconnect ("", "", "", "", "publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_Exec ($conn, "SELECT * FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

$arr = pg_fetch_array ($result, 0);

echo $arr[0] . " <- array\n";

$arr = pg_fetch_array ($result, 1);

echo $arr["author"] . " <- array\n";

?>

pg_fetch_object (PHP3 >= 3.0.1, PHP4)

Fetch a row as an object

object pg_fetch_object (int result, int row [, int result_type])

 Returns: An object with properties that correspond to the fetched row, or false if there are no more rows.

 Pg_fetch_object() is similar to pg_fetch_array(), with one difference - an object is returned, instead of an array. Indirectly, that means that you can only access the data by the field names, and not by their offsets (numbers are illegal property names).

 The third optional argument result_type in pg_fetch_object() is a constant and can take the following values: PGSQL_ASSOC, PGSQL_NUM, and PGSQL_BOTH.

Note: Result_type was added in PHP 4.0.

 Speed-wise, the function is identical to pg_fetch_array(), and almost as quick as pg_fetch_row() (the difference is insignificant).

 See also: pg_fetch_array() and pg_fetch_row().

Example 1. Postgres fetch object

<?php

$database = "verlag";

$db_conn = pg_connect ("localhost", "5432", "", "", $database);

if (!$db_conn): ?>

 <H1>Failed connecting to postgres database <? echo $database ?></H1> <?

 exit;

endif;

$qu = pg_exec ($db_conn, "SELECT * FROM verlag ORDER BY autor");

$row = 0; // postgres needs a row counter other dbs might not

while ($data = pg_fetch_object ($qu, $row)):

 echo $data->autor." (";

 echo $data->jahr ."): ";

 echo $data->titel."
";

 $row++;

endwhile; ?>

<PRE><?php

$fields[] = Array ("autor", "Author");

$fields[] = Array ("jahr", " Year");

$fields[] = Array ("titel", " Title");

$row= 0; // postgres needs a row counter other dbs might not

while ($data = pg_fetch_object ($qu, $row)):

 echo "----------\n";

 reset ($fields);

 while (list (,$item) = each ($fields)):

 echo $item[1].": ".$data->$item[0]."\n";

 endwhile;

 $row++;

endwhile;

echo "----------\n"; ?>

</PRE> <?php

pg_freeResult ($qu);

pg_close ($db_conn);

?>

pg_fetch_row (PHP3 >= 3.0.1, PHP4)

Get a row as an enumerated array

array pg_fetch_row (int result, int row)

 Returns: An array that corresponds to the fetched row, or false if there are no more rows.

 Pg_fetch_row() fetches one row of data from the result associated with the specified result identifier. The row is returned as an array. Each result column is stored in an array offset, starting at offset 0.

 See also: pg_fetch_array(), pg_fetch_object(), pg_result().

Example 1. Postgres fetch row

<?php

$conn = pg_pconnect ("", "", "", "", "publisher");

if (!$conn) {

 echo "An error occured.\n";

 exit;

}

$result = pg_Exec ($conn, "SELECT * FROM authors");

if (!$result) {

 echo "An error occured.\n";

 exit;

}

$num = pg_numrows($result);

for ($i=0; $i<$num; $i++) {

 $r = pg_fetch_row($result, $i);

 for ($j=0; $j<count($r); $j++) {

 echo "$r[$j] ";

 }

 echo "
";

}

?>

pg_fieldisnull (PHP3 , PHP4)

Test if a field is NULL

int pg_fieldisnull (int result_id, int row, mixed field)

 Test if a field is NULL or not. Returns 0 if the field in the given row is not NULL. Returns 1 if the field in the given row is NULL. Field can be specified as number or fieldname. Row numbering starts at 0.

pg_fieldname (PHP3 , PHP4)

Returns the name of a field

string pg_fieldname (int result_id, int field_number)

 Pg_fieldname() will return the name of the field occupying the given column number in the given PostgreSQL result identifier. Field numbering starts from 0.

pg_fieldnum (PHP3 , PHP4)

Returns the field number of the named field

int pg_fieldnum (int result_id, string field_name)

 Pg_fieldnum() will return the number of the column slot that corresponds to the named field in the given PosgreSQL result identifier. Field numbering starts at 0. This function will return -1 on error.

pg_fieldprtlen (PHP3 , PHP4)

Returns the printed length

int pg_fieldprtlen (int result_id, int row_number, string field_name)

 Pg_fieldprtlen() will return the actual printed length (number of characters) of a specific value in a PostgreSQL result. Row numbering starts at 0. This function will return -1 on an error.

pg_fieldsize (PHP3 , PHP4)

 Returns the internal storage size of the named field

int pg_fieldsize (int result_id, int field_number)

 Pg_fieldsize() will return the internal storage size (in bytes) of the field number in the given PostgreSQL result. Field numbering starts at 0. A field size of -1 indicates a variable length field. This function will return false on error.

pg_fieldtype (PHP3 , PHP4)

 Returns the type name for the corresponding field number

string pg_fieldtype (int result_id, int field_number)

 Pg_fieldtype() will return a string containing the type name of the given field in the given PostgreSQL result identifier. Field numbering starts at 0.

pg_freeresult (PHP3 , PHP4)

Free reult memory

int pg_freeresult (int result_id)

 Pg_freeresult() only needs to be called if you are worried about using too much memory while your script is running. All result memory will automatically be freed when the script is finished. But, if you are sure you are not going to need the result data anymore in a script, you may call pg_freeresult() with the result identifier as an argument and the associated result memory will be freed.

pg_getlastoid (PHP3 , PHP4)

Returns the last object identifier

int pg_getlastoid (int result_id)

 Pg_getlastoid() can be used to retrieve the oid assigned to an inserted tuple if the result identifier is used from the last command sent via pg_exec() and was an SQL INSERT. This function will return a positive integer if there was a valid oid. It will return -1 if an error occured or the last command sent via pg_exec() was not an INSERT.

pg_host (PHP3 , PHP4)

 Returns the host name associated with the connection

string pg_host (int connection_id)

 Pg_host() will return the host name of the given PostgreSQL connection identifier is connected to.

pg_loclose (PHP3 , PHP4)

Close a large object

void pg_loclose (int fd)

 Pg_loclose() closes an Inversion Large Object. Fd is a file descriptor for the large object from pg_loopen().

pg_locreate (PHP3 , PHP4)

Create a large object

int pg_locreate (int conn)

 Pg_locreate() creates an Inversion Large Object and returns the oid of the large object. conn specifies a valid database connection. PostgreSQL access modes INV_READ, INV_WRITE, and INV_ARCHIVE are not supported, the object is created always with both read and write access. INV_ARCHIVE has been removed from PostgreSQL itself (version 6.3 and above).

pg_loexport (PHP4 >= 4.0.1)

Export a large object to file

bool pg_loexport (int oid, int file [, int connection_id])

 The oid argument specifies the object id of the large object to export and the filename argument specifies the pathname of the file. Returns FALSE if an error occurred, TRUE otherwise. Remember that handling large objects in PostgreSQL must happen inside a transaction.

pg_loimport (PHP4 >= 4.0.1)

Import a large object from file

int pg_loimport (int file [, int connection_id])

 The filename argument specifies the pathname of the file to be imported as a large object. Returns FALSE if an error occurred, object id of the just created large object otherwise. Remember that handling large objects in PostgreSQL must happen inside a transaction.

pg_loopen (PHP3 , PHP4)

Open a large object

int pg_loopen (int conn, int objoid, string mode)

 Pg_loopen() open an Inversion Large Object and returns file descriptor of the large object. The file descriptor encapsulates information about the connection. Do not close the connection before closing the large object file descriptor. objoid specifies a valid large object oid and mode can be either "r", "w", or "rw".

pg_loread (PHP3 , PHP4)

Read a large object

string pg_loread (int fd, int len)

 pg_loread() reads at most len bytes from a large object and returns it as a string. fd specifies a valid large object file descriptor andlen specifies the maximum allowable size of the large object segment.

pg_loreadall (PHP3 , PHP4)

 Read a entire large object and send straight to browser

void pg_loreadall (int fd)

 Pg_loreadall() reads a large object and passes it straight through to the browser after sending all pending headers. Mainly intended for sending binary data like images or sound.

pg_lounlink (PHP3 , PHP4)

Delete a large object

void pg_lounlink (int conn, int lobjid)

 Pg_lounlink() deletes a large object with the lobjid identifier for that large object.

pg_lowrite (PHP3 , PHP4)

Write a large object

int pg_lowrite (int fd, string buf)

 Pg_lowrite() writes at most to a large object from a variable buf and returns the number of bytes actually written, or false in the case of an error. fd is a file descriptor for the large object from pg_loopen().

pg_numfields (PHP3 , PHP4)

Returns the number of fields

int pg_numfields (int result_id)

 Pg_numfields() will return the number of fields (columns) in a PostgreSQL result. The argument is a valid result identifier returned by pg_exec(). This function will return -1 on error.

pg_numrows (PHP3 , PHP4)

Returns the number of rows

int pg_numrows (int result_id)

 Pg_numrows() will return the number of rows in a PostgreSQL result. The argument is a valid result identifier returned by pg_exec(). This function will return -1 on error.

pg_options (PHP3 , PHP4)

Get the options associated with the connection

string pg_options (int connection_id)

 Pg_options() will return a string containing the options specified on the given PostgreSQL connection identifier.

pg_pconnect (PHP3 , PHP4)

 Open a persistent PostgreSQL connection

int pg_pconnect (string host, string port, string options, string tty, string dbname)

 Returns a connection index on success, or false if the connection could not be made. Opens a persistent connection to a PostgreSQL database. Each of the arguments should be a quoted string, including the port number. The options and tty arguments are optional and can be left out. This function returns a connection index that is needed by other PostgreSQL functions. You can have multiple persistent connections open at once. See also pg_connect().

 A connection can also established with the following command: $conn = pg_pconnect("dbname=marliese port=5432"); Other parameters besides dbname and port are host, tty, options, user and password.

pg_port (PHP3 , PHP4)

 Return the port number associated with the connection

int pg_port (int connection_id)

 Pg_port() will return the port number that the given PostgreSQL connection identifier is connected to.

pg_result (PHP3 , PHP4)

Returns values from a result identifier

mixed pg_result (int result_id, int row_number, mixed fieldname)

 Pg_result() will return values from a result identifier produced by pg_Exec(). The row_number and fieldname sepcify what cell in the table of results to return. Row numbering starts from 0. Instead of naming the field, you may use the field index as an unquoted number. Field indices start from 0.

 PostgreSQL has many built in types and only the basic ones are directly supported here. All forms of integer, boolean and oid types are returned as integer values. All forms of float, and real types are returned as double values. All other types, including arrays are returned as strings formatted in the same default PostgreSQL manner that you would see in the psql program.

pg_trace (PHP4 >= 4.0.1)

Enable tracing a PostgreSQL connection

bool pg_trace (string filename [, string mode [, int connection]])

 Enables tracing of the PostgreSQL frontend/backend communication to a debugging file. To fully understand the results one needs to be familiar with the internals of PostgreSQL communication protocol. For those who are not, it can still be useful for tracing errors in queries sent to the server, you could do for example grep '^To backend' trace.log and see what query actually were sent to the PostgreSQL server.

 Filename and mode are the same as in fopen() (mode defaults to 'w'), connection specifies the connection to trace and defaults to the last one opened.

 Returns TRUE if filename could be opened for logging, FALSE otherwise.

 See also fopen() and pg_untrace().

pg_tty (PHP3 , PHP4)

 Return the tty name associated with the connection

string pg_tty (int connection_id)

 Pg_tty() will return the tty name that server side debugging output is sent to on the given PostgreSQL connection identifier.

pg_untrace (PHP4 >= 4.0.1)

Disable tracing of a PostgreSQL connection

bool pg_untrace ([int connection])

 Stop tracing started by pg_trace(). connection specifies the connection that was traced and defaults to the last one opened.

 Returns always TRUE.

 See also pg_trace().

L. Program Execution functions

escapeshellcmd (PHP3 , PHP4)

escape shell metacharacters

string escapeshellcmd (string command)

 EscapeShellCmd() escapes any characters in a string that might be used to trick a shell command into executing arbitrary commands. This function should be used to make sure that any data coming from user input is escaped before this data is passed to the exec() or system() functions, or to the backtick operator. A standard use would be:

system(EscapeShellCmd($cmd))

 See also exec(), popen(), system(), and the backtick operator.

exec (PHP3 , PHP4)

Execute an external program

string exec (string command [, string array [, int return_var]])

 exec() executes the given command, however it does not output anything. It simply returns the last line from the result of the command. If you need to execute a command and have all the data from the command passed directly back without any interference, use the PassThru() function.

 If the array argument is present, then the specified array will be filled with every line of output from the command. Note that if the array already contains some elements, exec() will append to the end of the array. If you do not want the function to append elements, call unset() on the array before passing it to exec().

 If the return_var argument is present along with the array argument, then the return status of the executed command will be written to this variable.

 Note that if you are going to allow data coming from user input to be passed to this function, then you should be using EscapeShellCmd() to make sure that users cannot trick the system into executing arbitrary commands.

 Note also that if you start a program using this function and want to leave it running in the background, you have to make sure that the output of that program is redirected to a file or some other output stream or else PHP will hang until the execution of the program ends.

 See also system(), PassThru(), popen(), EscapeShellCmd(), and the backtick operator.

passthru (PHP3 , PHP4)

 Execute an external program and display raw output

void passthru (string command [, int return_var])

 The passthru() function is similar to the Exec() function in that it executes a command. If the return_var argument is present, the return status of the Unix command will be placed here. This function should be used in place of Exec() or System() when the output from the Unix command is binary data which needs to be passed directly back to the browser. A common use for this is to execute something like the pbmplus utilities that can output an image stream directly. By setting the content-type to image/gif and then calling a pbmplus program to output a gif, you can create PHP scripts that output images directly.

 Note that if you start a program using this function and want to leave it running in the background, you have to make sure that the output of that program is redirected to a file or some other output stream or else PHP will hang until the execution of the program ends.

 See also exec(), system(), popen(), EscapeShellCmd(), and the backtick operator.

system (PHP3 , PHP4)

Execute an external program and display output

string system (string command [, int return_var])

 System() is just like the C version of the function in that it executes the given command and outputs the result. If a variable is provided as the second argument, then the return status code of the executed command will be written to this variable.

 Note, that if you are going to allow data coming from user input to be passed to this function, then you should be using the EscapeShellCmd() function to make sure that users cannot trick the system into executing arbitrary commands.

 Note also that if you start a program using this function and want to leave it running in the background, you have to make sure that the output of that program is redirected to a file or some other output stream or else PHP will hang until the execution of the program ends.

 The System() call also tries to automatically flush the web server's output buffer after each line of output if PHP is running as a server module.

 Returns the last line of the command output on success, and false on failure.

 If you need to execute a command and have all the data from the command passed directly back without any interference, use the PassThru() function.

 See also exec(), PassThru(), popen(), EscapeShellCmd(), and the backtick operator.

LI. Pspell Functions

 The pspell() functions allow you to check the spelling of a word and offer suggestions.

 You need the aspell and pspell libraries, available from http://aspell.sourceforge.net/ and http://pspell.sourceforge.net/ respectively, and add the --with-pspell[=dir] option when compiling php.

pspell_new (PHP4 CVS only)

Load a new dictionary

int pspell_new (string language [, string spelling [, string jargon [, string encoding [, int mode]]]])

 Pspell_new() opens up a new dictionary and returns the dictionary link identifier for use in other pspell functions.

 The language parameter is the language code which consists of the two letter ISO 639 language code and an optional two letter ISO 3166 country code after a dash or underscore.

 The spelling parameter is the requested spelling for languages with more than one spelling such as English. Known values are 'american', 'british', and 'canadian'.

 The jargon parameter contains extra information to distinguish two different words lists that have the same language and spelling parameters.

 The encoding parameter is the encoding that words are expected to be in. Valid values are 'utf-8', 'iso8859-*', 'koi8-r', 'viscii', 'cp1252', 'machine unsigned 16', 'machine unsigned 32'. This parameter is largely untested, so be careful when using.

 The mode parameter is the mode in which spellchecker will work. There are several modes available:

•
 PSPELL_FAST - Fast mode (least number of suggestions)

•
 PSPELL_NORMAL - Normal mode (more suggestions)

•
 PSPELL_BAD_SPELLERS - Slow mode (a lot of suggestions)

•
 PSPELL_RUN_TOGETHER - Consider run-together words as legal compounds. That is, "thecat" will be a legal compound, athough there should be a space between the two words. Changing this setting only affects the results returned by pspell_check(); pspell_suggest() will still return suggestions.

 Mode is a bitmask constructed from different constants listed above. However, PSPELL_FAST, PSPELL_NORMAL and PSPELL_BAD_SPELLERS are mutually exclusive, so you should select only one of them.

 For more information and examples, check out inline manual pspell website:http://pspell.sourceforge.net/.

Example 1. Pspell_new()

$pspell_link = pspell_new ("en", "", "", "",

 (PSPELL_FAST|PSPELL_RUN_TOGETHER));

pspell_check (PHP4 CVS only)

Check a word

boolean pspell_check (int dictionary_link, string word)

 Pspell_check() checks the spelling of a word and returns true if the spelling is correct, false if not.

Example 1. Pspell_check()

$pspell_link = pspell_new ("en");

if (pspell_check ($pspell_link, "testt")) {

 echo "This is a valid spelling";

} else {

 echo "Sorry, wrong spelling";

}

pspell_suggest (PHP4 CVS only)

Suggest spellings of a word

array pspell_suggest (int dictionary_link, string word)

 Pspell_suggest() returns an array of possible spellings for the given word.

Example 1. Pspell_suggest()

$pspell_link = pspell_new ("en");

if (!pspell_check ($pspell_link, "testt")) {

 $suggestions = pspell_suggest ($pspell_link, "testt");

 for ($i=0; $i < count ($suggestions); $i++) {

 echo "Possible spelling: " . $suggestions[$i] . "
";

 }

}

LII. GNU Readline

 The readline() functions implement an interface to the GNU Readline library. These are functions that provide editable command lines. An example being the way Bash allows you to use the arrow keys to insert characters or scroll through command history. Because of the interactive nature of this library, it will be of little use for writing Web applications, but may be useful when writing scripts meant to be run from a shell.

 The home page of the GNU Readline project is http://cnswww.cns.cwru.edu/~chet/readline/rltop.html. It's maintained by Chet Ramey, who's also the author of Bash.

readline (PHP4 >= 4.0b4)

Reads a line

string readline ([string prompt])

 This function returns a single string from the user. You may specify a string with which to prompt the user. The line returned has the ending newline removed. You must add this line to the history yourself using readline_add_history().

Example 1. readline()

//get 3 commands from user

for($i=0; $i < 3; $i++)

{

 $line = readline("Command: ");

 readline_add_history($line);

}

//dump history

print_r(readline_list_history());

//dump variables

print_r(readline_info());

readline_add_history (PHP4 >= 4.0b4)

Adds a line to the history

void readline_add_history (string line)

 This function adds a line to the command line history.

readline_clear_history (PHP4 >= 4.0b4)

Clears the history

boolean readline_clear_history (void)

 This function clears the entire command line history.

readline_completion_function (PHP4 >= 4.0b4)

Registers a completion function

boolean readline_completion_function (string line)

 This function registers a completion function. You must supply the name of an existing function which accepts a partial command line and returns an array of possible matches. This is the same kind of functionality you'd get if you hit your tab key while using Bash.

readline_info (PHP4 >= 4.0b4)

Gets/sets various internal readline variables

mixed readline_info ([string varname [, string newvalue]])

 If called with no parameters, this function returns an array of values for all the setting readline uses. The elements will will be indexed by the following values: done, end, erase_empty_line, library_version, line_buffer, mark, pending_input, point, prompt, readline_name, and terminal_name.

 If called with one parameter, the value of that setting is returned. If called with two parameters, the setting will be changed to the given value.

readline_list_history (PHP4 >= 4.0b4)

Lists the history

array readline_list_history (void)

 This function returns an array of the entire command line history. The elements are indexed by integers starting at zero.

readline_read_history (PHP4 >= 4.0b4)

Reads the history

boolean readline_read_history (string filename)

 This function reads a command history from a file.

readline_write_history (PHP4 >= 4.0b4)

Writes the history

boolean readline_write_history (string filename)

 This function writes the command history to a file.

LIII. GNU Recode functions

 This module contains an interface to the GNU Recode library, version 3.5. To be able to use the functions defined in this module you must compile you PHP interpreter using the --with-recode option. In order to do so, you must have GNU Recode 3.5 or higher installed on your system.

 The GNU Recode library converts files between various coded character sets and surface encodings. When this cannot be achieved exactly, it may get rid of the offending characters or fall back on approximations. The library recognises or produces nearly 150 different character sets and is able to convert files between almost any pair. Most RFC 1345 character sets are supported.

recode_string (PHP3 >= 3.0.13, PHP4 >= 4.0RC1)

Recode a string according to a recode request

string recode_string (string request, string string)

 Recode the string string according to the recode request request. Returns FALSE, if unable to comply, TRUE otherwise.

 A simple recode request may be "lat1..iso646-de". See also the GNU Recode documentation of your installation for detailed instructions about recode requests.

recode (PHP4 >= 4.0RC1)

Recode a string according to a recode request

string recode_string (string request, string string)

Note: This is an alias for recode_string(). It has been added in PHP4.

recode_file (PHP3 >= 3.0.13, PHP4 >= 4.0RC1)

 Recode from file to file according to recode request

bool recode_file (int input, int output)

 Recode the file referenced by file handle input into the file referenced by file handle output according to the recode request. Returns FALSE, if unable to comply, TRUE otherwise.

 This function does not currently process filehandles referencing remote files (URLs). Both filehandles must refer to local files.

LIV. Regular Expression Functions (Perl-Compatible)

 The syntax for patterns used in these functions closely resembles Perl. The expression should be enclosed in the delimiters, a forward slash (/), for example. Any character can be used for delimiter as long as it's not alphanumeric or backslash (\). If the delimiter character has to be used in the expression itself, it needs to be escaped by backslash.

 The ending delimiter may be followed by various modifiers that affect the matching. See Pattern Modifiers.

Example 1. Examples of valid patterns

•
/<\/\w+>/

•
|(\d{3})-\d+|Sm

•
/^(?i)php[34]/

Example 2. Examples of invalid patterns

•
 /href='(.*)' - missing ending delimiter

•
 /\w+\s*\w+/J - unknown modifier 'J'

•
 1-\d3-\d3-\d4| - missing starting delimiter

Note: The Perl-compatible regular expression functions are available in PHP 4 and in PHP 3.0.9 and up.

preg_match (PHP3 >= 3.0.9, PHP4)

Perform a regular expression match

int preg_match (string pattern, string subject [, array matches])

 Searches subject for a match to the regular expression given in pattern.

 If matches is provided, then it is filled with the results of search. $matches[0] will contain the text that match the full pattern, $matches[1] will have the text that matched the first captured parenthesized subpattern, and so on.

 Returns true if a match for pattern was found in the subject string, or false if not match was found or an error occurred.

Example 1. find the string of text "php"

// the "i" after the pattern delimiter indicates a case-insensitive search

if (preg_match ("/php/i", "PHP is the web scripting language of choice.")) {

 print "A match was found.";

} else {

 print "A match was not found.";

}

Example 2. find the word "web"

// the \b in the pattern indicates a word boundary, so only the distinct

// word "web" is matched, and not a word partial like "webbing" or "cobweb"

if (preg_match ("/\bweb\b/i", "PHP is the web scripting language of choice.")) {

 print "A match was found.";

} else {

 print "A match was not found.";

}

if (preg_match ("/\bweb\b/i", "PHP is the website scripting language of choice.")) {

 print "A match was found.";

} else {

 print "A match was not found.";

}

Example 3. Getting the domain name out of a URL

preg_match("/^(.*)([^\.]+\.[^\.]+)(\/.*)?/U",

 "http://www.php.net/index.html", $matches);

// show the second parenthesized subpattern

echo "domain name is: ".$matches[2]."\n";

 This example will produce:

domain name is: php.net

 See also preg_match_all(), preg_replace(), and preg_split().

preg_match_all (PHP3 >= 3.0.9, PHP4)

Perform a global regular expression match

int preg_match_all (string pattern, string subject, array matches [, int order])

 Searches subject for all matches to the regular expression given in pattern and puts them in matches in the order specified by order.

 After the first match is found, the subsequent searches are continued on from end of the last match.

 order can be one of two things:

PREG_PATTERN_ORDER

 Orders results so that $matches[0] is an array of full pattern matches, $matches[1] is an array of strings matched by the first parenthesized subpattern, and so on.

preg_match_all ("|<[^>]+>(.*)</[^>]+>|U",

 "example: <div align=left>this is a test</div>",

 $out, PREG_PATTERN_ORDER);

print $out[0][0].", ".$out[0][1]."\n";

print $out[1][0].", ".$out[1][1]."\n"

 This example will produce:

example: , <div align=left>this is a test</div>

example: , this is a test

 So, $out[0] contains array of strings that matched full pattern, and $out[1] contains array of strings enclosed by tags.

PREG_SET_ORDER

 Orders results so that $matches[0] is an array of first set of matches, $matches[1] is an array of second set of matches, and so on.

preg_match_all ("|<[^>]+>(.*)</[^>]+>|U",

 "example: <div align=left>this is a test</div>",

 $out, PREG_SET_ORDER);

print $out[0][0].", ".$out[0][1]."\n";

print $out[1][0].", ".$out[1][1]."\n"

 This example will produce:

example: , example:

<div align=left>this is a test</div>, this is a test

 In this case, $matches[0] is the first set of matches, and $matches[0][0] has text matched by full pattern, $matches[0][1] has text matched by first subpattern and so on. Similarly, $matches[1] is the second set of matches, etc.

 If order is not specified, it is assumed to be PREG_PATTERN_ORDER.

 Returns the number of full pattern matches, or false if no match is found or an error occurred.

Example 1. Getting all phone numbers out of some text.

preg_match_all ("/\(? (\d{3})? \)? (?(1) [\-\s]) \d{3}-\d{4}/x",

 "Call 555-1212 or 1-800-555-1212", $phones);

Example 2. Find matching HTML tags (greedy)

// the \\2 is an example of backreferencing. This tells pcre that

// it must match the 2nd set of parenthesis in the regular expression

// itself, which would be the ([\w]+) in this case.

$html = "bold textclick me

preg_match_all ("/(<([\w]+)[^>]*>)(.*)(<\/\\2>)/", $html, $matches);

for ($i=0; $i< count($matches[0]); $i++) {

echo "matched: ".$matches[0][$i]."\n";

echo "part 1: ".$matches[1][$i]."\n";

echo "part 2: ".$matches[3][$i]."\n";

echo "part 3: ".$matches[4][$i]."\n\n";

}

 This example will produce:

matched: bold text

part 1:

part 2: bold text

part 3:

matched: click me

part 1:

part 2: click me

part 3:

 See also preg_match(), preg_replace(), and preg_split().

preg_replace (PHP3 >= 3.0.9, PHP4)

Perform a regular expression search and replace

mixed preg_replace (mixed pattern, mixed replacement, mixed subject [, int limit])

 Searches subject for matches to pattern and replaces them with replacement . If limit is specified, then only limit matches will be replaced; if limit is omitted or is -1, then all matches are replaced.

 Replacement may contain references of the form \\n. Every such reference will be replaced by the text captured by the n'th parenthesized pattern. n can be from 0 to 99, and \\0 refers to the text matched by the whole pattern. Opening parentheses are counted from left to right (starting from 1) to obtain the number of the capturing subpattern.

 If no matches are found in subject, then it will be returned unchanged.

 Every parameter to preg_replace() can be an array.

 If subject is an array, then the search and replace is performed on every entry of subject, and the return value is an array as well.

 If pattern and replacement are arrays, then preg_replace() takes a value from each array and uses them to do search and replace on subject. If replacement has fewer values than pattern, then empty string is used for the rest of replacement values. If pattern is an array and replacement is a string; then this replacement string is used for every value of pattern. The converse would not make sense, though.

 /e modifier makes preg_replace() treat the replacement parameter as PHP code after the appropriate references substitution is done. Tip: make sure that replacement constitutes a valid PHP code string, otherwise PHP will complain about a parse error at the line containing preg_replace().

Example 1. Replacing several values

$patterns = array ("/(19|20\d{2})-(\d{1,2})-(\d{1,2})/",

 "/^\s*{(\w+)}\s*=/");

$replace = array ("\\3/\\4/\\1", "$\\1 =");

print preg_replace ($patterns, $replace, "{startDate} = 1999-5-27");

 This example will produce:

$startDate = 5/27/1999

Example 2. Using /e modifier

preg_replace ("/(<\/?)(\w+)([^>]*>)/e",

 "'\\1'.strtoupper('\\2').'\\3'",

 $html_body);

 This would capitalize all HTML tags in the input text.

Example 3. Convert HTML to text

// $document should contain an HTML document.

// This will remove HTML tags, javascript sections

// and white space. It will also convert some

// common HTML entities to their text equivalent.

$search = array ("'<script[^>]*?>.*?</script>'si", // Strip out javascript

 "'<[\/\!]*?[^<>]*?>'si", // Strip out html tags

 "'([\r\n])[\s]+'", // Strip out white space

 "'&(quote|#34);'i", // Replace html entities

 "'&(amp|#38);'i",

 "'&(lt|#60);'i",

 "'&(gt|#62);'i",

 "'&(nbsp|#160);'i",

 "'&(iexcl|#161);'i",

 "'&(cent|#162);'i",

 "'&(pound|#163);'i",

 "'&(copy|#169);'i",

 "'&#(\d+);'e"); // evaluate as php

$replace = array ("",

 "",

 "\\1",

 "\"",

 "&",

 "<",

 ">",

 " ",

 chr(161),

 chr(162),

 chr(163),

 chr(169),

 "chr(\\1)");

$text = preg_replace ($search, $replace, $document);

 See also preg_match(), preg_match_all(), and preg_split().

preg_split (PHP3 >= 3.0.9, PHP4)

Split string by a regular expression

array preg_split (string pattern, string subject [, int limit [, int flags]])

Note: Parameter flags was added in PHP 4 Beta 3.

 Returns an array containing substrings of subject split along boundaries matched by pattern.

 If limit is specified, then only substrings up to limit are returned.

 If flags is PREG_SPLIT_NO_EMPTY then only non-empty pieces will be by preg_split().

Example 1. Getting parts of search string

// split the phrase by any number of commas or space characters,

// which include " ", \r, \t, \n and \f

$keywords = preg_split ("/[\s,]+/", "hypertext language, programming");

 See also preg_match(), preg_match_all(), and preg_replace().

preg_quote (PHP3 >= 3.0.9, PHP4)

Quote regular expression characters

string preg_quote (string str [, string delimiter])

 preg_quote() takes str and puts a backslash in front of every character that is part of the regular expression syntax. This is useful if you have a run-time string that you need to match in some text and the string may contain special regex characters.

 If the optional delimiter is specified, it will also be escaped. This is useful for escaping the delimeter that is required by the PCRE functions. The / is the most commonly used delimiter.

 The special regular expression characters are:

. \\ + * ? [^] $ () { } = ! < > | :

Example 1.

$keywords = "$40 for a g3/400";

$keywords = preg_quote ($keywords, "/");

echo $keywords; // returns \$40 for a g3\/400

Example 2. Italicizing a word within some text

// In this example, preg_quote($word) is used to keep the

// asterisks from having special meaning to the regular

// expression.

$textbody = "This book is *very* difficult to find.";

$word = "*very*";

$textbody = preg_replace ("/".preg_quote($word)."/",

 "<i>".$word."</i>",

 $textbody);

preg_grep (PHP4)

 Return array entries that match the pattern

array preg_grep (string pattern, array input)

 preg_grep() returns the array consisting of the elements of the input array that match the given pattern.

Example 1. preg_grep() example

// return all array elements

// containing floating point numbers

$fl_array = preg_grep ("/^(\d+)?\.\d+$/", $array);

Pattern Modifiers (unknown)

Describes possible modifiers in regex patterns

 The current possible PCRE modifiers are listed below. The names in parentheses refer to internal PCRE names for these modifiers.

i (PCRE_CASELESS)

 If this modifier is set, letters in the pattern match both upper and lower case letters.

m (PCRE_MULTILINE)

 By default, PCRE treats the subject string as consisting of a single "line" of characters (even if it actually contains several newlines). The "start of line" metacharacter (^) matches only at the start of the string, while the "end of line" metacharacter ($) matches only at the end of the string, or before a terminating newline (unless E modifier is set). This is the same as Perl.

 When this modifier is set, the "start of line" and "end of line" constructs match immediately following or immediately before any newline in the subject string, respectively, as well as at the very start and end. This is equivalent to Perl's /m modifier. If there are no "\n" characters in a subject string, or no occurrences of ^ or $ in a pattern, setting this modifier has no effect.

s (PCRE_DOTALL)

 If this modifier is set, a dot metacharater in the pattern matches all characters, including newlines. Without it, newlines are excluded. This modifier is equivalent to Perl's /s modifier. A negative class such as [^a] always matches a newline character, independent of the setting of this modifier.

x (PCRE_EXTENDED)

 If this modifier is set, whitespace data characters in the pattern are totally ignored except when escaped or inside a character class, and characters between an unescaped # outside a character class and the next newline character, inclusive, are also ignored. This is equivalent to Perl's /x modifier, and makes it possible to include comments inside complicated patterns. Note, however, that this applies only to data characters. Whitespace characters may never appear within special character sequences in a pattern, for example within the sequence (?(which introduces a conditional subpattern.

e

 If this modifier is set, preg_replace() does normal substitution of \\ references in the replacement string, evaluates it as PHP code, and uses the result for replacing the search string.

 Only preg_replace() uses this modifier; it is ignored by other PCRE functions.

A (PCRE_ANCHORED)

 If this modifier is set, the pattern is forced to be "anchored", that is, it is constrained to match only at the start of the string which is being searched (the "subject string"). This effect can also be achieved by appropriate constructs in the pattern itself, which is the only way to do it in Perl.

E (PCRE_DOLLAR_ENDONLY)

 If this modifier is set, a dollar metacharacter in the pattern matches only at the end of the subject string. Without this modifier, a dollar also matches immediately before the final character if it is a newline (but not before any other newlines). This modifier is ignored if m modifier is set. There is no equivalent to this modifier in Perl.

S

 When a pattern is going to be used several times, it is worth spending more time analyzing it in order to speed up the time taken for matching. If this modifier is set, then this extra analysis is performed. At present, studying a pattern is useful only for non-anchored patterns that do not have a single fixed starting character.

U (PCRE_UNGREEDY)

 This modifier inverts the "greediness" of the quantifiers so that they are not greedy by default, but become greedy if followed by "?". It is not compatible with Perl. It can also be set by a (?U) modifier setting within the pattern.

X (PCRE_EXTRA)

 This modifier turns on additional functionality of PCRE that is incompatible with Perl. Any backslash in a pattern that is followed by a letter that has no special meaning causes an error, thus reserving these combinations for future expansion. By default, as in Perl, a backslash followed by a letter with no special meaning is treated as a literal. There are at present no other features controlled by this modifier.

Pattern Syntax (unknown)

Describes PCRE regex syntax

 The PCRE library is a set of functions that implement regular

 expression pattern matching using the same syntax and semantics

 as Perl 5, with just a few differences (see below). The current

 implementation corresponds to Perl 5.005.

 The differences described here are with respect to Perl

 5.005.

 1. By default, a whitespace character is any character that

 the C library function isspace() recognizes, though it is

 possible to compile PCRE with alternative character type

 tables. Normally isspace() matches space, formfeed, newline,

 carriage return, horizontal tab, and vertical tab. Perl 5 no

 longer includes vertical tab in its set of whitespace char-

 acters. The \v escape that was in the Perl documentation for

 a long time was never in fact recognized. However, the char-

 acter itself was treated as whitespace at least up to 5.002.

 In 5.004 and 5.005 it does not match \s.

 2. PCRE does not allow repeat quantifiers on lookahead

 assertions. Perl permits them, but they do not mean what you

 might think. For example, (?!a){3} does not assert that the

 next three characters are not "a". It just asserts that the

 next character is not "a" three times.

 3. Capturing subpatterns that occur inside negative looka-

 head assertions are counted, but their entries in the

 offsets vector are never set. Perl sets its numerical vari-

 ables from any such patterns that are matched before the

 assertion fails to match something (thereby succeeding), but

 only if the negative lookahead assertion contains just one

 branch.

 4. Though binary zero characters are supported in the sub-

 ject string, they are not allowed in a pattern string

 because it is passed as a normal C string, terminated by

 zero. The escape sequence "\0" can be used in the pattern to

 represent a binary zero.

 5. The following Perl escape sequences are not supported:

 \l, \u, \L, \U, \E, \Q. In fact these are implemented by

 Perl's general string-handling and are not part of its pat-

 tern matching engine.

 6. The Perl \G assertion is not supported as it is not

 relevant to single pattern matches.

 7. Fairly obviously, PCRE does not support the (?{code})

 construction.

 8. There are at the time of writing some oddities in Perl

 5.005_02 concerned with the settings of captured strings

 when part of a pattern is repeated. For example, matching

 "aba" against the pattern /^(a(b)?)+$/ sets $2 to the value

 "b", but matching "aabbaa" against /^(aa(bb)?)+$/ leaves $2

 unset. However, if the pattern is changed to

 /^(aa(b(b))?)+$/ then $2 (and $3) get set.

 In Perl 5.004 $2 is set in both cases, and that is also true

 of PCRE. If in the future Perl changes to a consistent state

 that is different, PCRE may change to follow.

 9. Another as yet unresolved discrepancy is that in Perl

 5.005_02 the pattern /^(a)?(?(1)a|b)+$/ matches the string

 "a", whereas in PCRE it does not. However, in both Perl and

 PCRE /^(a)?a/ matched against "a" leaves $1 unset.

 10. PCRE provides some extensions to the Perl regular

 expression facilities:

 (a) Although lookbehind assertions must match fixed length

 strings, each alternative branch of a lookbehind assertion

 can match a different length of string. Perl 5.005 requires

 them all to have the same length.

 (b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not

 set, the $ meta- character matches only at the very end of

 the string.

 (c) If PCRE_EXTRA is set, a backslash followed by a letter

 with no special meaning is faulted.

 (d) If PCRE_UNGREEDY is set, the greediness of the repeti-

 tion quantifiers is inverted, that is, by default they are

 not greedy, but if followed by a question mark they are.

 The syntax and semantics of the regular expressions sup-

 ported by PCRE are described below. Regular expressions are

 also described in the Perl documentation and in a number of

 other books, some of which have copious examples. Jeffrey

 Friedl's "Mastering Regular Expressions", published by

 O'Reilly (ISBN 1-56592-257-3), covers them in great detail.

 The description here is intended as reference documentation.

 A regular expression is a pattern that is matched against a

 subject string from left to right. Most characters stand for

 themselves in a pattern, and match the corresponding charac-

 ters in the subject. As a trivial example, the pattern

 The quick brown fox

 matches a portion of a subject string that is identical to

 itself. The power of regular expressions comes from the

 ability to include alternatives and repetitions in the pat-

 tern. These are encoded in the pattern by the use of meta-

 characters, which do not stand for themselves but instead

 are interpreted in some special way.

 There are two different sets of meta-characters: those that

 are recognized anywhere in the pattern except within square

 brackets, and those that are recognized in square brackets.

 Outside square brackets, the meta-characters are as follows:

 \ general escape character with several uses

 ^ assert start of subject (or line, in multiline

 mode)

 $ assert end of subject (or line, in multiline mode)

 . match any character except newline (by default)

 [start character class definition

 | start of alternative branch

 (start subpattern

) end subpattern

 ? extends the meaning of (

 also 0 or 1 quantifier

 also quantifier minimizer

 * 0 or more quantifier

 + 1 or more quantifier

 { start min/max quantifier

 Part of a pattern that is in square brackets is called a

 "character class". In a character class the only meta-

 characters are:

 \ general escape character

 ^ negate the class, but only if the first character

 - indicates character range

] terminates the character class

 The following sections describe the use of each of the

 meta-characters.

BACKSLASH

 The backslash character has several uses. Firstly, if it is

 followed by a non-alphameric character, it takes away any

 special meaning that character may have. This use of

 backslash as an escape character applies both inside and

 outside character classes.

 For example, if you want to match a "*" character, you write

 "*" in the pattern. This applies whether or not the follow-

 ing character would otherwise be interpreted as a meta-

 character, so it is always safe to precede a non-alphameric

 with "\" to specify that it stands for itself. In particu-

 lar, if you want to match a backslash, you write "\\".

 If a pattern is compiled with the PCRE_EXTENDED option, whi-

 tespace in the pattern (other than in a character class) and

 characters between a "#" outside a character class and the

 next newline character are ignored. An escaping backslash

 can be used to include a whitespace or "#" character as part

 of the pattern.

 A second use of backslash provides a way of encoding non-

 printing characters in patterns in a visible manner. There

 is no restriction on the appearance of non-printing charac-

 ters, apart from the binary zero that terminates a pattern,

 but when a pattern is being prepared by text editing, it is

 usually easier to use one of the following escape sequences

 than the binary character it represents:

 \a alarm, that is, the BEL character (hex 07)

 \cx "control-x", where x is any character

 \e escape (hex 1B)

 \f formfeed (hex 0C)

 \n newline (hex 0A)

 \r carriage return (hex 0D)

 \t tab (hex 09)

 \xhh character with hex code hh

 \ddd character with octal code ddd, or backreference

 The precise effect of "\cx" is as follows: if "x" is a lower

 case letter, it is converted to upper case. Then bit 6 of

 the character (hex 40) is inverted. Thus "\cz" becomes hex

 1A, but "\c{" becomes hex 3B, while "\c;" becomes hex 7B.

 After "\x", up to two hexadecimal digits are read (letters

 can be in upper or lower case).

 After "\0" up to two further octal digits are read. In both

 cases, if there are fewer than two digits, just those that

 are present are used. Thus the sequence "\0\x\07" specifies

 two binary zeros followed by a BEL character. Make sure you

 supply two digits after the initial zero if the character

 that follows is itself an octal digit.

 The handling of a backslash followed by a digit other than 0

 is complicated. Outside a character class, PCRE reads it

 and any following digits as a decimal number. If the number

 is less than 10, or if there have been at least that many

 previous capturing left parentheses in the expression, the

 entire sequence is taken as a back reference. A description

 of how this works is given later, following the discussion

 of parenthesized subpatterns.

 Inside a character class, or if the decimal number is

 greater than 9 and there have not been that many capturing

 subpatterns, PCRE re-reads up to three octal digits follow-

 ing the backslash, and generates a single byte from the

 least significant 8 bits of the value. Any subsequent digits

 stand for themselves. For example:

 \040 is another way of writing a space

 \40 is the same, provided there are fewer than 40

 previous capturing subpatterns

 \7 is always a back reference

 \11 might be a back reference, or another way of

 writing a tab

 \011 is always a tab

 \0113 is a tab followed by the character "3"

 \113 is the character with octal code 113 (since there

 can be no more than 99 back references)

 \377 is a byte consisting entirely of 1 bits

 \81 is either a back reference, or a binary zero

 followed by the two characters "8" and "1"

 Note that octal values of 100 or greater must not be intro-

 duced by a leading zero, because no more than three octal

 digits are ever read.

 All the sequences that define a single byte value can be

 used both inside and outside character classes. In addition,

 inside a character class, the sequence "\b" is interpreted

 as the backspace character (hex 08). Outside a character

 class it has a different meaning (see below).

 The third use of backslash is for specifying generic charac-

 ter types:

 \d any decimal digit

 \D any character that is not a decimal digit

 \s any whitespace character

 \S any character that is not a whitespace character

 \w any "word" character

 \W any "non-word" character

 Each pair of escape sequences partitions the complete set of

 characters into two disjoint sets. Any given character

 matches one, and only one, of each pair.

 A "word" character is any letter or digit or the underscore

 character, that is, any character which can be part of a

 Perl "word". The definition of letters and digits is con-

 trolled by PCRE's character tables, and may vary if locale-

 specific matching is taking place (see "Locale support"

 above). For example, in the "fr" (French) locale, some char-

 acter codes greater than 128 are used for accented letters,

 and these are matched by \w.

 These character type sequences can appear both inside and

 outside character classes. They each match one character of

 the appropriate type. If the current matching point is at

 the end of the subject string, all of them fail, since there

 is no character to match.

 The fourth use of backslash is for certain simple asser-

 tions. An assertion specifies a condition that has to be met

 at a particular point in a match, without consuming any

 characters from the subject string. The use of subpatterns

 for more complicated assertions is described below. The

 backslashed assertions are

 \b word boundary

 \B not a word boundary

 \A start of subject (independent of multiline mode)

 \Z end of subject or newline at end (independent of

 multiline mode)

 \z end of subject (independent of multiline mode)

 These assertions may not appear in character classes (but

 note that "\b" has a different meaning, namely the backspace

 character, inside a character class).

 A word boundary is a position in the subject string where

 the current character and the previous character do not both

 match \w or \W (i.e. one matches \w and the other matches

 \W), or the start or end of the string if the first or last

 character matches \w, respectively.

 The \A, \Z, and \z assertions differ from the traditional

 circumflex and dollar (described below) in that they only

 ever match at the very start and end of the subject string,

 whatever options are set. They are not affected by the

 PCRE_NOTBOL or PCRE_NOTEOL options. The difference between

 \Z and \z is that \Z matches before a newline that is the

 last character of the string as well as at the end of the

 string, whereas \z matches only at the end.

CIRCUMFLEX AND DOLLAR

 Outside a character class, in the default matching mode, the

 circumflex character is an assertion which is true only if

 the current matching point is at the start of the subject

 string. Inside a character class, circumflex has an entirely

 different meaning (see below).

 Circumflex need not be the first character of the pattern if

 a number of alternatives are involved, but it should be the

 first thing in each alternative in which it appears if the

 pattern is ever to match that branch. If all possible alter-

 natives start with a circumflex, that is, if the pattern is

 constrained to match only at the start of the subject, it is

 said to be an "anchored" pattern. (There are also other con-

 structs that can cause a pattern to be anchored.)

 A dollar character is an assertion which is true only if the

 current matching point is at the end of the subject string,

 or immediately before a newline character that is the last

 character in the string (by default). Dollar need not be the

 last character of the pattern if a number of alternatives

 are involved, but it should be the last item in any branch

 in which it appears. Dollar has no special meaning in a

 character class.

 The meaning of dollar can be changed so that it matches only

 at the very end of the string, by setting the

 PCRE_DOLLAR_ENDONLY option at compile or matching time. This

 does not affect the \Z assertion.

 The meanings of the circumflex and dollar characters are

 changed if the PCRE_MULTILINE option is set. When this is

 the case, they match immediately after and immediately

 before an internal "\n" character, respectively, in addition

 to matching at the start and end of the subject string. For

 example, the pattern /^abc$/ matches the subject string

 "def\nabc" in multiline mode, but not otherwise. Conse-

 quently, patterns that are anchored in single line mode

 because all branches start with "^" are not anchored in mul-

 tiline mode. The PCRE_DOLLAR_ENDONLY option is ignored if

 PCRE_MULTILINE is set.

 Note that the sequences \A, \Z, and \z can be used to match

 the start and end of the subject in both modes, and if all

 branches of a pattern start with \A is it always anchored,

 whether PCRE_MULTILINE is set or not.

FULL STOP (PERIOD, DOT)

 Outside a character class, a dot in the pattern matches any

 one character in the subject, including a non-printing

 character, but not (by default) newline. If the PCRE_DOTALL

 option is set, then dots match newlines as well. The han-

 dling of dot is entirely independent of the handling of cir-

 cumflex and dollar, the only relationship being that they

 both involve newline characters. Dot has no special meaning

 in a character class.

SQUARE BRACKETS

 An opening square bracket introduces a character class, ter-

 minated by a closing square bracket. A closing square

 bracket on its own is not special. If a closing square

 bracket is required as a member of the class, it should be

 the first data character in the class (after an initial cir-

 cumflex, if present) or escaped with a backslash.

 A character class matches a single character in the subject;

 the character must be in the set of characters defined by

 the class, unless the first character in the class is a cir-

 cumflex, in which case the subject character must not be in

 the set defined by the class. If a circumflex is actually

 required as a member of the class, ensure it is not the

 first character, or escape it with a backslash.

 For example, the character class [aeiou] matches any lower

 case vowel, while [^aeiou] matches any character that is not

 a lower case vowel. Note that a circumflex is just a con-

 venient notation for specifying the characters which are in

 the class by enumerating those that are not. It is not an

 assertion: it still consumes a character from the subject

 string, and fails if the current pointer is at the end of

 the string.

 When caseless matching is set, any letters in a class

 represent both their upper case and lower case versions, so

 for example, a caseless [aeiou] matches "A" as well as "a",

 and a caseless [^aeiou] does not match "A", whereas a case-

 ful version would.

 The newline character is never treated in any special way in

 character classes, whatever the setting of the PCRE_DOTALL

 or PCRE_MULTILINE options is. A class such as [^a] will

 always match a newline.

 The minus (hyphen) character can be used to specify a range

 of characters in a character class. For example, [d-m]

 matches any letter between d and m, inclusive. If a minus

 character is required in a class, it must be escaped with a

 backslash or appear in a position where it cannot be inter-

 preted as indicating a range, typically as the first or last

 character in the class.

 It is not possible to have the literal character "]" as the

 end character of a range. A pattern such as [W-]46] is

 interpreted as a class of two characters ("W" and "-") fol-

 lowed by a literal string "46]", so it would match "W46]" or

 "-46]". However, if the "]" is escaped with a backslash it

 is interpreted as the end of range, so [W-\]46] is inter-

 preted as a single class containing a range followed by two

 separate characters. The octal or hexadecimal representation

 of "]" can also be used to end a range.

 Ranges operate in ASCII collating sequence. They can also be

 used for characters specified numerically, for example

 [\000-\037]. If a range that includes letters is used when

 caseless matching is set, it matches the letters in either

 case. For example, [W-c] is equivalent to [][\^_`wxyzabc],

 matched caselessly, and if character tables for the "fr"

 locale are in use, [\xc8-\xcb] matches accented E characters

 in both cases.

 The character types \d, \D, \s, \S, \w, and \W may also

 appear in a character class, and add the characters that

 they match to the class. For example, [\dABCDEF] matches any

 hexadecimal digit. A circumflex can conveniently be used

 with the upper case character types to specify a more res-

 tricted set of characters than the matching lower case type.

 For example, the class [^\W_] matches any letter or digit,

 but not underscore.

 All non-alphameric characters other than \, -, ^ (at the

 start) and the terminating] are non-special in character

 classes, but it does no harm if they are escaped.

VERTICAL BAR

 Vertical bar characters are used to separate alternative

 patterns. For example, the pattern

 gilbert|sullivan

 matches either "gilbert" or "sullivan". Any number of alter-

 natives may appear, and an empty alternative is permitted

 (matching the empty string). The matching process tries

 each alternative in turn, from left to right, and the first

 one that succeeds is used. If the alternatives are within a

 subpattern (defined below), "succeeds" means matching the

 rest of the main pattern as well as the alternative in the

 subpattern.

INTERNAL OPTION SETTING

 The settings of PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL,

 and PCRE_EXTENDED can be changed from within the pattern by

 a sequence of Perl option letters enclosed between "(?" and

 ")". The option letters are

 i for PCRE_CASELESS

 m for PCRE_MULTILINE

 s for PCRE_DOTALL

 x for PCRE_EXTENDED

 For example, (?im) sets caseless, multiline matching. It is

 also possible to unset these options by preceding the letter

 with a hyphen, and a combined setting and unsetting such as

 (?im-sx), which sets PCRE_CASELESS and PCRE_MULTILINE while

 unsetting PCRE_DOTALL and PCRE_EXTENDED, is also permitted.

 If a letter appears both before and after the hyphen, the

 option is unset.

 The scope of these option changes depends on where in the

 pattern the setting occurs. For settings that are outside

 any subpattern (defined below), the effect is the same as if

 the options were set or unset at the start of matching. The

 following patterns all behave in exactly the same way:

 (?i)abc

 a(?i)bc

 ab(?i)c

 abc(?i)

 which in turn is the same as compiling the pattern abc with

 PCRE_CASELESS set. In other words, such "top level" set-

 tings apply to the whole pattern (unless there are other

 changes inside subpatterns). If there is more than one set-

 ting of the same option at top level, the rightmost setting

 is used.

 If an option change occurs inside a subpattern, the effect

 is different. This is a change of behaviour in Perl 5.005.

 An option change inside a subpattern affects only that part

 of the subpattern that follows it, so

 (a(?i)b)c

 matches abc and aBc and no other strings (assuming

 PCRE_CASELESS is not used). By this means, options can be

 made to have different settings in different parts of the

 pattern. Any changes made in one alternative do carry on

 into subsequent branches within the same subpattern. For

 example,

 (a(?i)b|c)

 matches "ab", "aB", "c", and "C", even though when matching

 "C" the first branch is abandoned before the option setting.

 This is because the effects of option settings happen at

 compile time. There would be some very weird behaviour oth-

 erwise.

 The PCRE-specific options PCRE_UNGREEDY and PCRE_EXTRA can

 be changed in the same way as the Perl-compatible options by

 using the characters U and X respectively. The (?X) flag

 setting is special in that it must always occur earlier in

 the pattern than any of the additional features it turns on,

 even when it is at top level. It is best put at the start.

SUBPATTERNS

 Subpatterns are delimited by parentheses (round brackets),

 which can be nested. Marking part of a pattern as a subpat-

 tern does two things:

 1. It localizes a set of alternatives. For example, the pat-

 tern

 cat(aract|erpillar|)

 matches one of the words "cat", "cataract", or "caterpil-

 lar". Without the parentheses, it would match "cataract",

 "erpillar" or the empty string.

 2. It sets up the subpattern as a capturing subpattern (as

 defined above). When the whole pattern matches, that por-

 tion of the subject string that matched the subpattern is

 passed back to the caller via the ovector argument of

 pcre_exec(). Opening parentheses are counted from left to

 right (starting from 1) to obtain the numbers of the captur-

 ing subpatterns.

 For example, if the string "the red king" is matched against

 the pattern

 the ((red|white) (king|queen))

 the captured substrings are "red king", "red", and "king",

 and are numbered 1, 2, and 3.

 The fact that plain parentheses fulfil two functions is not

 always helpful. There are often times when a grouping sub-

 pattern is required without a capturing requirement. If an

 opening parenthesis is followed by "?:", the subpattern does

 not do any capturing, and is not counted when computing the

 number of any subsequent capturing subpatterns. For example,

 if the string "the white queen" is matched against the

 pattern

 the ((?:red|white) (king|queen))

 the captured substrings are "white queen" and "queen", and

 are numbered 1 and 2. The maximum number of captured sub-

 strings is 99, and the maximum number of all subpatterns,

 both capturing and non-capturing, is 200.

 As a convenient shorthand, if any option settings are

 required at the start of a non-capturing subpattern, the

 option letters may appear between the "?" and the ":". Thus

 the two patterns

 (?i:saturday|sunday)

 (?:(?i)saturday|sunday)

 match exactly the same set of strings. Because alternative

 branches are tried from left to right, and options are not

 reset until the end of the subpattern is reached, an option

 setting in one branch does affect subsequent branches, so

 the above patterns match "SUNDAY" as well as "Saturday".

REPETITION

 Repetition is specified by quantifiers, which can follow any

 of the following items:

 a single character, possibly escaped

 the . metacharacter

 a character class

 a back reference (see next section)

 a parenthesized subpattern (unless it is an assertion -

 see below)

 The general repetition quantifier specifies a minimum and

 maximum number of permitted matches, by giving the two

 numbers in curly brackets (braces), separated by a comma.

 The numbers must be less than 65536, and the first must be

 less than or equal to the second. For example:

 z{2,4}

 matches "zz", "zzz", or "zzzz". A closing brace on its own

 is not a special character. If the second number is omitted,

 but the comma is present, there is no upper limit; if the

 second number and the comma are both omitted, the quantifier

 specifies an exact number of required matches. Thus

 [aeiou]{3,}

 matches at least 3 successive vowels, but may match many

 more, while

 \d{8}

 matches exactly 8 digits. An opening curly bracket that

 appears in a position where a quantifier is not allowed, or

 one that does not match the syntax of a quantifier, is taken

 as a literal character. For example, {,6} is not a quantif-

 ier, but a literal string of four characters.

 The quantifier {0} is permitted, causing the expression to

 behave as if the previous item and the quantifier were not

 present.

 For convenience (and historical compatibility) the three

 most common quantifiers have single-character abbreviations:

 * is equivalent to {0,}

 + is equivalent to {1,}

 ? is equivalent to {0,1}

 It is possible to construct infinite loops by following a

 subpattern that can match no characters with a quantifier

 that has no upper limit, for example:

 (a?)*

 Earlier versions of Perl and PCRE used to give an error at

 compile time for such patterns. However, because there are

 cases where this can be useful, such patterns are now

 accepted, but if any repetition of the subpattern does in

 fact match no characters, the loop is forcibly broken.

 By default, the quantifiers are "greedy", that is, they

 match as much as possible (up to the maximum number of per-

 mitted times), without causing the rest of the pattern to

 fail. The classic example of where this gives problems is in

 trying to match comments in C programs. These appear between

 the sequences /* and */ and within the sequence, individual

 * and / characters may appear. An attempt to match C com-

 ments by applying the pattern

 /*.**/

 to the string

 /* first command */ not comment /* second comment */

 fails, because it matches the entire string due to the

 greediness of the .* item.

 However, if a quantifier is followed by a question mark,

 then it ceases to be greedy, and instead matches the minimum

 number of times possible, so the pattern

 /*.*?*/

 does the right thing with the C comments. The meaning of the

 various quantifiers is not otherwise changed, just the pre-

 ferred number of matches. Do not confuse this use of ques-

 tion mark with its use as a quantifier in its own right.

 Because it has two uses, it can sometimes appear doubled, as

 in

 \d??\d

 which matches one digit by preference, but can match two if

 that is the only way the rest of the pattern matches.

 If the PCRE_UNGREEDY option is set (an option which is not

 available in Perl) then the quantifiers are not greedy by

 default, but individual ones can be made greedy by following

 them with a question mark. In other words, it inverts the

 default behaviour.

 When a parenthesized subpattern is quantified with a minimum

 repeat count that is greater than 1 or with a limited max-

 imum, more store is required for the compiled pattern, in

 proportion to the size of the minimum or maximum.

 If a pattern starts with .* or .{0,} and the PCRE_DOTALL

 option (equivalent to Perl's /s) is set, thus allowing the .

 to match newlines, then the pattern is implicitly anchored,

 because whatever follows will be tried against every charac-

 ter position in the subject string, so there is no point in

 retrying the overall match at any position after the first.

 PCRE treats such a pattern as though it were preceded by \A.

 In cases where it is known that the subject string contains

 no newlines, it is worth setting PCRE_DOTALL when the pat-

 tern begins with .* in order to obtain this optimization, or

 alternatively using ^ to indicate anchoring explicitly.

 When a capturing subpattern is repeated, the value captured

 is the substring that matched the final iteration. For exam-

 ple, after

 (tweedle[dume]{3}\s*)+

 has matched "tweedledum tweedledee" the value of the cap-

 tured substring is "tweedledee". However, if there are

 nested capturing subpatterns, the corresponding captured

 values may have been set in previous iterations. For exam-

 ple, after

 /(a|(b))+/

 matches "aba" the value of the second captured substring is

 "b".

BACK REFERENCES

 Outside a character class, a backslash followed by a digit

 greater than 0 (and possibly further digits) is a back

 reference to a capturing subpattern earlier (i.e. to its

 left) in the pattern, provided there have been that many

 previous capturing left parentheses.

 However, if the decimal number following the backslash is

 less than 10, it is always taken as a back reference, and

 causes an error only if there are not that many capturing

 left parentheses in the entire pattern. In other words, the

 parentheses that are referenced need not be to the left of

 the reference for numbers less than 10. See the section

 entitled "Backslash" above for further details of the han-

 dling of digits following a backslash.

 A back reference matches whatever actually matched the cap-

 turing subpattern in the current subject string, rather than

 anything matching the subpattern itself. So the pattern

 (sens|respons)e and \1ibility

 matches "sense and sensibility" and "response and responsi-

 bility", but not "sense and responsibility". If caseful

 matching is in force at the time of the back reference, then

 the case of letters is relevant. For example,

 ((?i)rah)\s+\1

 matches "rah rah" and "RAH RAH", but not "RAH rah", even

 though the original capturing subpattern is matched case-

 lessly.

 There may be more than one back reference to the same sub-

 pattern. If a subpattern has not actually been used in a

 particular match, then any back references to it always

 fail. For example, the pattern

 (a|(bc))\2

 always fails if it starts to match "a" rather than "bc".

 Because there may be up to 99 back references, all digits

 following the backslash are taken as part of a potential

 back reference number. If the pattern continues with a digit

 character, then some delimiter must be used to terminate the

 back reference. If the PCRE_EXTENDED option is set, this can

 be whitespace. Otherwise an empty comment can be used.

 A back reference that occurs inside the parentheses to which

 it refers fails when the subpattern is first used, so, for

 example, (a\1) never matches. However, such references can

 be useful inside repeated subpatterns. For example, the pat-

 tern

 (a|b\1)+

 matches any number of "a"s and also "aba", "ababaa" etc. At

 each iteration of the subpattern, the back reference matches

 the character string corresponding to the previous itera-

 tion. In order for this to work, the pattern must be such

 that the first iteration does not need to match the back

 reference. This can be done using alternation, as in the

 example above, or by a quantifier with a minimum of zero.

ASSERTIONS

 An assertion is a test on the characters following or

 preceding the current matching point that does not actually

 consume any characters. The simple assertions coded as \b,

 \B, \A, \Z, \z, ^ and $ are described above. More compli-

 cated assertions are coded as subpatterns. There are two

 kinds: those that look ahead of the current position in the

 subject string, and those that look behind it.

 An assertion subpattern is matched in the normal way, except

 that it does not cause the current matching position to be

 changed. Lookahead assertions start with (?= for positive

 assertions and (?! for negative assertions. For example,

 \w+(?=;)

 matches a word followed by a semicolon, but does not include

 the semicolon in the match, and

 foo(?!bar)

 matches any occurrence of "foo" that is not followed by

 "bar". Note that the apparently similar pattern

 (?!foo)bar

 does not find an occurrence of "bar" that is preceded by

 something other than "foo"; it finds any occurrence of "bar"

 whatsoever, because the assertion (?!foo) is always true

 when the next three characters are "bar". A lookbehind

 assertion is needed to achieve this effect.

 Lookbehind assertions start with (?<= for positive asser-

 tions and (?<! for negative assertions. For example,

 (?<!foo)bar

 does find an occurrence of "bar" that is not preceded by

 "foo". The contents of a lookbehind assertion are restricted

 such that all the strings it matches must have a fixed

 length. However, if there are several alternatives, they do

 not all have to have the same fixed length. Thus

 (?<=bullock|donkey)

 is permitted, but

 (?<!dogs?|cats?)

 causes an error at compile time. Branches that match dif-

 ferent length strings are permitted only at the top level of

 a lookbehind assertion. This is an extension compared with

 Perl 5.005, which requires all branches to match the same

 length of string. An assertion such as

 (?<=ab(c|de))

 is not permitted, because its single top-level branch can

 match two different lengths, but it is acceptable if rewrit-

 ten to use two top-level branches:

 (?<=abc|abde)

 The implementation of lookbehind assertions is, for each

 alternative, to temporarily move the current position back

 by the fixed width and then try to match. If there are

 insufficient characters before the current position, the

 match is deemed to fail. Lookbehinds in conjunction with

 once-only subpatterns can be particularly useful for match-

 ing at the ends of strings; an example is given at the end

 of the section on once-only subpatterns.

 Several assertions (of any sort) may occur in succession.

 For example,

 (?<=\d{3})(?<!999)foo

 matches "foo" preceded by three digits that are not "999".

 Furthermore, assertions can be nested in any combination.

 For example,

 (?<=(?<!foo)bar)baz

 matches an occurrence of "baz" that is preceded by "bar"

 which in turn is not preceded by "foo".

 Assertion subpatterns are not capturing subpatterns, and may

 not be repeated, because it makes no sense to assert the

 same thing several times. If an assertion contains capturing

 subpatterns within it, these are always counted for the pur-

 poses of numbering the capturing subpatterns in the whole

 pattern. Substring capturing is carried out for positive

 assertions, but it does not make sense for negative asser-

 tions.

 Assertions count towards the maximum of 200 parenthesized

 subpatterns.

ONCE-ONLY SUBPATTERNS

 With both maximizing and minimizing repetition, failure of

 what follows normally causes the repeated item to be re-

 evaluated to see if a different number of repeats allows the

 rest of the pattern to match. Sometimes it is useful to

 prevent this, either to change the nature of the match, or

 to cause it fail earlier than it otherwise might, when the

 author of the pattern knows there is no point in carrying

 on.

 Consider, for example, the pattern \d+foo when applied to

 the subject line

 123456bar

 After matching all 6 digits and then failing to match "foo",

 the normal action of the matcher is to try again with only 5

 digits matching the \d+ item, and then with 4, and so on,

 before ultimately failing. Once-only subpatterns provide the

 means for specifying that once a portion of the pattern has

 matched, it is not to be re-evaluated in this way, so the

 matcher would give up immediately on failing to match "foo"

 the first time. The notation is another kind of special

 parenthesis, starting with (?> as in this example:

 (?>\d+)bar

 This kind of parenthesis "locks up" the part of the pattern

 it contains once it has matched, and a failure further into

 the pattern is prevented from backtracking into it. Back-

 tracking past it to previous items, however, works as nor-

 mal.

 An alternative description is that a subpattern of this type

 matches the string of characters that an identical stan-

 dalone pattern would match, if anchored at the current point

 in the subject string.

 Once-only subpatterns are not capturing subpatterns. Simple

 cases such as the above example can be thought of as a max-

 imizing repeat that must swallow everything it can. So,

 while both \d+ and \d+? are prepared to adjust the number of

 digits they match in order to make the rest of the pattern

 match, (?>\d+) can only match an entire sequence of digits.

 This construction can of course contain arbitrarily compli-

 cated subpatterns, and it can be nested.

 Once-only subpatterns can be used in conjunction with look-

 behind assertions to specify efficient matching at the end

 of the subject string. Consider a simple pattern such as

 abcd$

 when applied to a long string which does not match it.

 Because matching proceeds from left to right, PCRE will look

 for each "a" in the subject and then see if what follows

 matches the rest of the pattern. If the pattern is specified

 as

 ^.*abcd$

 then the initial .* matches the entire string at first, but

 when this fails, it backtracks to match all but the last

 character, then all but the last two characters, and so on.

 Once again the search for "a" covers the entire string, from

 right to left, so we are no better off. However, if the pat-

 tern is written as

 ^(?>.*)(?<=abcd)

 then there can be no backtracking for the .* item; it can

 match only the entire string. The subsequent lookbehind

 assertion does a single test on the last four characters. If

 it fails, the match fails immediately. For long strings,

 this approach makes a significant difference to the process-

 ing time.

CONDITIONAL SUBPATTERNS

 It is possible to cause the matching process to obey a sub-

 pattern conditionally or to choose between two alternative

 subpatterns, depending on the result of an assertion, or

 whether a previous capturing subpattern matched or not. The

 two possible forms of conditional subpattern are

 (?(condition)yes-pattern)

 (?(condition)yes-pattern|no-pattern)

 If the condition is satisfied, the yes-pattern is used; oth-

 erwise the no-pattern (if present) is used. If there are

 more than two alternatives in the subpattern, a compile-time

 error occurs.

 There are two kinds of condition. If the text between the

 parentheses consists of a sequence of digits, then the con-

 dition is satisfied if the capturing subpattern of that

 number has previously matched. Consider the following pat-

 tern, which contains non-significant white space to make it

 more readable (assume the PCRE_EXTENDED option) and to

 divide it into three parts for ease of discussion:

 (\()? [^()]+ (?(1) \))

 The first part matches an optional opening parenthesis, and

 if that character is present, sets it as the first captured

 substring. The second part matches one or more characters

 that are not parentheses. The third part is a conditional

 subpattern that tests whether the first set of parentheses

 matched or not. If they did, that is, if subject started

 with an opening parenthesis, the condition is true, and so

 the yes-pattern is executed and a closing parenthesis is

 required. Otherwise, since no-pattern is not present, the

 subpattern matches nothing. In other words, this pattern

 matches a sequence of non-parentheses, optionally enclosed

 in parentheses.

 If the condition is not a sequence of digits, it must be an

 assertion. This may be a positive or negative lookahead or

 lookbehind assertion. Consider this pattern, again contain-

 ing non-significant white space, and with the two alterna-

 tives on the second line:

 (?(?=[^a-z]*[a-z])

 \d{2}[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

 The condition is a positive lookahead assertion that matches

 an optional sequence of non-letters followed by a letter. In

 other words, it tests for the presence of at least one

 letter in the subject. If a letter is found, the subject is

 matched against the first alternative; otherwise it is

 matched against the second. This pattern matches strings in

 one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are

 letters and dd are digits.

COMMENTS

 The sequence (?# marks the start of a comment which

 continues up to the next closing parenthesis. Nested

 parentheses are not permitted. The characters that make up a

 comment play no part in the pattern matching at all.

 If the PCRE_EXTENDED option is set, an unescaped # character

 outside a character class introduces a comment that contin-

 ues up to the next newline character in the pattern.

PERFORMANCE

 Certain items that may appear in patterns are more efficient

 than others. It is more efficient to use a character class

 like [aeiou] than a set of alternatives such as (a|e|i|o|u).

 In general, the simplest construction that provides the

 required behaviour is usually the most efficient. Jeffrey

 Friedl's book contains a lot of discussion about optimizing

 regular expressions for efficient performance.

 When a pattern begins with .* and the PCRE_DOTALL option is

 set, the pattern is implicitly anchored by PCRE, since it

 can match only at the start of a subject string. However, if

 PCRE_DOTALL is not set, PCRE cannot make this optimization,

 because the . metacharacter does not then match a newline,

 and if the subject string contains newlines, the pattern may

 match from the character immediately following one of them

 instead of from the very start. For example, the pattern

 (.*) second

 matches the subject "first\nand second" (where \n stands for

 a newline character) with the first captured substring being

 "and". In order to do this, PCRE has to retry the match

 starting after every newline in the subject.

 If you are using such a pattern with subject strings that do

 not contain newlines, the best performance is obtained by

 setting PCRE_DOTALL, or starting the pattern with ^.* to

 indicate explicit anchoring. That saves PCRE from having to

 scan along the subject looking for a newline to restart at.

LV. Regular Expression Functions (POSIX Extended)

 Regular expressions are used for complex string manipulation in PHP. The functions that support regular expressions are:

•
ereg()

•
ereg_replace()

•
eregi()

•
eregi_replace()

•
split()

•
spliti()

 These functions all take a regular expression string as their first argument. PHP uses the POSIX extended regular expressions as defined by POSIX 1003.2. For a full description of POSIX regular expressions see the regex man pages included in the regex directory in the PHP distribution. It's in manpage format, so you'll want to do something along the lines of man /usr/local/src/regex/regex.7 in order to read it.

Example 1. Regular Expression Examples

ereg ("abc", $string);

/* Returns true if "abc"

 is found anywhere in $string. */

ereg ("^abc", $string);

/* Returns true if "abc"

 is found at the beginning of $string. */

ereg ("abc$", $string);

/* Returns true if "abc"

 is found at the end of $string. */

eregi ("(ozilla.[23]|MSIE.3)", $HTTP_USER_AGENT);

/* Returns true if client browser

 is Netscape 2, 3 or MSIE 3. */

ereg ("([[:alnum:]]+) ([[:alnum:]]+) ([[:alnum:]]+)", $string,$regs);

/* Places three space separated words

 into $regs[1], $regs[2] and $regs[3]. */

$string = ereg_replace ("^", "
", $string);

/* Put a
 tag at the beginning of $string. */

$string = ereg_replace ("$", "
", $string);

/* Put a
 tag at the end of $string. */

$string = ereg_replace ("\n", "", $string);

/* Get rid of any newline

 characters in $string. */

ereg (PHP3 , PHP4)

Regular expression match

int ereg (string pattern, string string [, array regs])

 Searches a string for matches to the regular expression given in pattern.

 If matches are found for parenthesized substrings of pattern and the function is called with the third argument regs, the matches will be stored in the elements of the array regs. $regs[1] will contain the substring which starts at the first left parenthesis; $regs[2] will contain the substring starting at the second, and so on. $regs[0] will contain a copy of string.

 If ereg() finds any matches at all, $regs will be filled with exactly ten elements, even though more or fewer than ten parenthesized substrings may actually have matched. This has no effect on ereg()'s ability to match more substrings. If no matches are found, $regs will not be altered by ereg().

 Searching is case sensitive.

 Returns true if a match for pattern was found in string, or false if no matches were found or an error occurred.

 The following code snippet takes a date in ISO format (YYYY-MM-DD) and prints it in DD.MM.YYYY format:

Example 1. Ereg() Example

if (ereg ("([0-9]{4})-([0-9]{1,2})-([0-9]{1,2})", $date, $regs)) {

 echo "$regs[3].$regs[2].$regs[1]";

} else {

 echo "Invalid date format: $date";

}

 See also eregi(), ereg_replace(), and eregi_replace().

ereg_replace (PHP3 , PHP4)

Replace regular expression

string ereg_replace (string pattern, string replacement, string string)

 This function scans string for matches to pattern, then replaces the matched text with replacement.

 The modified string is returned. (Which may mean that the original string is returned if there are no matches to be replaced.)

 If pattern contains parenthesized substrings, replacement may contain substrings of the form \\digit, which will be replaced by the text matching the digit'th parenthesized substring; \\0 will produce the entire contents of string. Up to nine substrings may be used. Parentheses may be nested, in which case they are counted by the opening parenthesis.

 If no matches are found in string, then string will be returned unchanged.

 For example, the following code snippet prints "This was a test" three times:

Example 1. Ereg_replace() Example

$string = "This is a test";

echo ereg_replace (" is", " was", $string);

echo ereg_replace ("()is", "\\1was", $string);

echo ereg_replace ("(()is)", "\\2was", $string);

 One thing to take note of is that if you use an integer value as the replacement parameter, you may not get the results you expect. This is because ereg_replace() will interpret the number as the ordinal value of a character, and apply that. For instance:

Example 2. ereg_replace() Example

<?php

/* This will not work as expected. */

$num = 4;

$string = "This string has four words.";

$string = ereg_replace('four', $num, $string);

echo $string; /* Output: 'This string has words.' */

/* This will work. */

$num = '4';

$string = "This string has four words.";

$string = ereg_replace('four', $num, $string);

echo $string; /* Output: 'This string has 4 words.' */

?>

 See also ereg(), eregi(), and eregi_replace().

eregi (PHP3 , PHP4)

case insensitive regular expression match

int eregi (string pattern, string string [, array regs])

 This function is identical to ereg() except that this ignores case distinction when matching alphabetic characters.

 See also ereg(), ereg_replace(), and eregi_replace().

eregi_replace (PHP3 , PHP4)

replace regular expression case insensitive

string eregi_replace (string pattern, string replacement, string string)

 This function is identical to ereg_replace() except that this ignores case distinction when matching alphabetic characters.

 See also ereg(), eregi(), and ereg_replace().

split (PHP3 , PHP4)

split string into array by regular expression

array split (string pattern, string string [, int limit])

 Returns an array of strings, each of which is a substring of string formed by splitting it on boundaries formed by the regular expression pattern. If limit is set, the returned array will contain a maximum of limit elements with the last element containing the whole rest of string. If an error occurs, split() returns false.

 To get the first five fields from a line from /etc/passwd:

Example 1. Split() Example

$passwd_list = split (":", $passwd_line, 5);

 To parse a date which may be delimited with slashes, dots, or hyphens:

Example 2. Split() Example

$date = "04/30/1973"; // Delimiters may be slash, dot, or hyphen

list ($month, $day, $year) = split ('[/.-]', $date);

echo "Month: $month; Day: $day; Year: $year
\n";

 Note that pattern is case-sensitive.

 Note that if you don't require the power of regular expressions, it is faster to use explode(), which doesn't incur the overhead of the regular expression engine.

 Please note that pattern is a regular expression. If you want to split on any of the characters which are considered special by regular expressions, you'll need to escape them first. If you think split() (or any other regex function, for that matter) is doing something weird, please read the file regex.7, included in the regex/ subdirectory of the PHP distribution. It's in manpage format, so you'll want to do something along the lines of man /usr/local/src/regex/regex.7 in order to read it.

 See also: spliti(), explode(), and implode().

spliti (PHP4 >= 4.0.1)

 Split string into array by regular expression case insensitive

array split (string pattern, string string [, int limit])

 This function is identical to split() except that this ignores case distinction when matching alphabetic characters.

 See also: split(), explode(), and implode().

sql_regcase (PHP3 , PHP4)

 Make regular expression for case insensitive match

string sql_regcase (string string)

 Returns a valid regular expression which will match string, ignoring case. This expression is string with each character converted to a bracket expression; this bracket expression contains that character's uppercase and lowercase form if applicable, otherwise it contains the original character twice.

Example 1. Sql_regcase() Example

echo sql_regcase ("Foo bar");

 prints

[Ff][Oo][Oo][][Bb][Aa][Rr]

.

 This can be used to achieve case insensitive pattern matching in products which support only case sensitive regular expressions.

LVI. Semaphore and Shared Memory Functions

 This module provides semaphore functions using System V semaphores. Semaphores may be used to provide exclusive access to resources on the current machine, or to limit the number of processes that may simultaneously use a resource.

 This module provides also shared memory functions using System V shared memory. Shared memory may be used to provide access to global variables. Different httpd-daemons and even other programs (such as Perl, C, ...) are able to access this data to provide a global data-exchange. Remember, that shared memory is NOT safe against simultaneous access. Use semaphores for synchronization.

Table 1. Limits of Shared Memory by the Unix OS

	SHMMAX
	max size of shared memory, normally 131072 bytes

	SHMMIN
	minimum size of shared memory, normally 1 byte

	SHMMNI
	max amount of shared memory segments, normally 100

	SHMSEG
	max amount of shared memory per process, normally 6

sem_get (PHP3 >= 3.0.6, PHP4)

Get a semaphore id

int sem_get (int key [, int max_acquire [, int perm]])

 Returns: A positive semaphore identifier on success, or false on error.

 Sem_get() returns an id that can be used to access the System V semaphore with the given key. The semaphore is created if necessary using the permission bits specified in perm (defaults to 0666). The number of processes that can acquire the semaphore simultaneously is set to max_acquire (defaults to 1). Actually this value is set only if the process finds it is the only process currently attached to the semaphore.

 A second call to sem_get() for the same key will return a different semaphore identifier, but both identifiers access the same underlying semaphore.

 See also: sem_acquire() and sem_release().

sem_acquire (PHP3 >= 3.0.6, PHP4)

Acquire a semaphore

int sem_acquire (int sem_identifier)

 Returns: true on success, false on error.

 Sem_acquire() blocks (if necessary) until the semaphore can be acquired. A process attempting to acquire a semaphore which it has already acquired will block forever if acquiring the semaphore would cause its max_acquire value to be exceeded.

 After processing a request, any semaphores acquired by the process but not explicitly released will be released automatically and a warning will be generated.

 See also: sem_get() and sem_release().

sem_release (PHP3 >= 3.0.6, PHP4)

Release a semaphore

int sem_release (int sem_identifier)

 Returns: true on success, false on error.

 Sem_release() releases the semaphore if it is currently acquired by the calling process, otherwise a warning is generated.

 After releasing the semaphore, sem_acquire() may be called to re-acquire it.

 See also: sem_get() and sem_acquire().

shm_attach (PHP3 >= 3.0.6, PHP4)

Creates or open a shared memory segment

int shm_attach (int key [, int memsize [, int perm]])

 Shm_attach() returns an id that that can be used to access the System V shared memory with the given key, the first call creates the shared memory segment with mem_size (default: sysvshm.init_mem in the configuration file, otherwise 10000 bytes) and the optional perm-bits (default: 0666).

 A second call to shm_attach() for the same key will return a different shared memory identifier, but both identifiers access the same underlying shared memory. Memsize and perm will be ignored.

shm_detach (PHP3 >= 3.0.6, PHP4)

Disconnects from shared memory segment

int shm_detach (int shm_identifier)

 Shm_detach() disconnects from the shared memory given by the shm_identifier created by shm_attach(). Remember, that shared memory still exist in the Unix system and the data is still present.

shm_remove (PHP3 >= 3.0.6, PHP4)

Removes shared memory from Unix systems

int shm_remove (int shm_identifier)

 Removes shared memory from Unix systems. All data will be destroyed.

shm_put_var (PHP3 >= 3.0.6, PHP4)

Inserts or updates a variable in shared memory

int shm_put_var (int shm_identifier, int variable_key, mixed variable)

 Inserts or updates a variable with a given variable_key. All variable-types (double, int, string, array) are supported.

shm_get_var (PHP3 >= 3.0.6, PHP4)

Returns a variable from shared memory

mixed shm_get_var (int id, int variable_key)

 Shm_get_var() returns the variable with a given variable_key. The variable is still present in the shared memory.

shm_remove_var (PHP3 >= 3.0.6, PHP4)

Removes a variable from shared memory

int shm_remove_var (int id, int variable_key)

 Removes a variable with a given variable_key and frees the occupied memory.

LVII. Session handling functions

 Session support in PHP consists of a way to preserve certain data across subsequent accesses. This enables you to build more customized applications and increase the appeal of your web site.

 If you are familiar with the session management of PHPLIB, you will notice that some concepts are similar to PHP's session support.

 A visitor accessing your web site is assigned an unique id, the so-called session id. This is either stored in a cookie on the user side or is propagated in the URL.

 The session support allows you to register arbitrary numbers of variables to be preserved across requests. When a visitor accesses your site, PHP will check automatically (if session.auto_start is set to 1) or on your request (explicitly through session_start() or implicitly through session_register()) whether a specific session id has been sent with the request. If this is the case, the prior saved environment is recreated.

 All registered variables are serialized after the request finishes. Registered variables which are undefined are marked as being not defined. On subsequent accesses, these are not defined by the session module unless the user defines them later.

 track_vars and register_globals configuration settings influence how the session variables get stored and restored.

 If track_vars is enabled and register_globals is disabled, only members of the global associative array $HTTP_SESSION_VARS can be registered as session variables. The restored session variables will only be available in the array $HTTP_SESSION_VARS.

Example 1. Registering a variable with track_vars enabled

<?php

session_register("count");

$HTTP_SESSION_VARS["count"]++;

?>

 If register_globals is enabled, then all global variables can be registered as session variables and the session variables will be restored to corresponding global variables.

Example 2. Registering a variable with register_globals enabled

<?php

session_register("count");

$count++;

?>

 If both track_vars and register_globals are enabled, then the globals variables and the $HTTP_SESSION_VARS entries will reference the same value.

 There are two methods to propagate a session id:

•
 Cookies

•
 URL parameter

 The session module supports both methods. Cookies are optimal, but since they are not reliable (clients are not bound to accept them), we cannot rely on them. The second method embeds the session id directly into URLs.

 PHP is capable of doing this transparently when compiled with --enable-trans-sid. If you enable this option, relative URIs will be changed to contain the session id automatically. Alternatively, you can use the constant SID which is defined, if the client did not send the appropriate cookie. SID is either of the form session_name=session_id or is an empty string.

 The following example demonstrates how to register a variable, and how to link correctly to another page using SID.

Example 3. Counting the number of hits of a single user

<?php

session_register ("count");

$count++;

?>

Hello visitor, you have seen this page <? echo $count; ?> times.<p>

<php?

the <?=SID?> is necessary to preserve the session id

in the case that the user has disabled cookies

?>

To continue, <A HREF="nextpage.php?<?=SID?>">click here

 To implement database storage you need PHP code and a user level function session_set_save_handler(). You would have to extend the following functions to cover MySQL or another database.

Example 4. Usage of session_set_save_handler()

<?php

function open ($save_path, $session_name) {

 echo "open ($save_path, $session_name)\n";

 return true;

}

function close() {

 echo "close\n";

 return true;

}

function read ($key) {

 echo "read ($key)\n";

 return "foo|i:1;";

}

function write ($key, $val) {

 echo "write ($key, $val)\n";

 return true;

}

function destroy ($key) {

 return true;

}

function gc ($maxlifetime) {

 return true;

}

session_set_save_handler ("open", "close", "read", "write", "destroy", "gc");

session_start();

$foo++;

?>

 Will produce this results:

$./php save_handler.php

Content-Type: text/html

Set-cookie: PHPSESSID=f08b925af0ecb52bdd2de97d95cdbe6b

open (/tmp, PHPSESSID)

read (f08b925af0ecb52bdd2de97d95cdbe6b)

write (f08b925af0ecb52bdd2de97d95cdbe6b, foo|i:2;)

close

 The <?=SID?> is not necessary, if --enable-trans-sid was used to compile PHP.

 The session management system supports a number of configuration options which you can place in your php.ini file. We will give a short overview.

•
 session.save_handler defines the name of the handler which is used for storing and retrieving data associated with a session. Defaults to files.

•
 session.save_path defines the argument which is passed to the save handler. If you choose the default files handler, this is the path where the files are created. Defaults to /tmp.

•
 session.name specifies the name of the session which is used as cookie name. It should only contain alphanumeric characters. Defaults to PHPSESSID.

•
 session.auto_start specifies whether the session module starts a session automatically on request startup. Defaults to 0 (disabled).

•
 session.cookie_lifetime specifies the lifetime of the cookie in seconds which is sent to the browser. The value 0 means "until the browser is closed." Defaults to 0.

•
 session.serialize_handler defines the name of the handler which is used to serialize/deserialize data. Currently, a PHP internal format (name php) and WDDX is supported (name wddx). WDDX is only available, if PHP is compiled with WDDX support. Defaults to php.

•
 session.gc_probability specifies the probability that the gc (garbage collection) routine is started on each request in percent. Defaults to 1.

•
 session.gc_maxlifetime specifies the number of seconds after which data will be seen as 'garbage' and cleaned up.

•
 session.referer_check contains the substring you want to check each HTTP Referer for. If the Referer was sent by the client and the substring was not found, the embedded session id will be marked as invalid. Defaults to the empty string.

•
 session.entropy_file gives a path to an external resource (file) which will be used as an additional entropy source in the session id creation process. Examples are /dev/random or /dev/urandom which are available on many Unix systems.

•
 session.entropy_length specifies the number of bytes which will be read from the file specified above. Defaults to 0 (disabled).

•
 session.use_cookies specifies whether the module will use cookies to store the session id on the client side. Defaults to 1 (enabled).

•
 session.cookie_path specifies path to set in session_cookie. Defaults to /.

•
 session.cookie_domain specifies domain to set in session_cookie. Default is none at all.

•
 session.cache_limiter specifies cache control method to use for session pages (nocache/private/public). Defaults to nocache.

•
 session.cache_expire specifies time-to-live for cached session pages in minutes, this has no effect for nocache limiter. Defaults to 180.

Note: Session handling was added in PHP 4.0.

session_start (PHP4)

Initialize session data

bool session_start(void);

 session_start() creates a session (or resumes the current one based on the session id being passed via a GET variable or a cookie).

 This function always returns true.

Note: This function was added in PHP 4.0.

session_destroy (PHP4)

Destroys all data registered to a session

bool session_destroy(void);

 session_destroy() destroys all of the data associated with the current session.

 This function returns true on success and false on failure to destroy the session data.

session_name (PHP4)

Get and/or set the current session name

string session_name ([string name])

 session_name() returns the name of the current session. If name is specified, the name of the current session is changed to its value.

 The session name references the session id in cookies and URLs. It should contain only alphanumeric characters; it should be short and descriptive (i.e. for users with enabled cookie warnings). The session name is resetted to the default value stored in session.name at request startup time. Thus, you need to call session_name() for every request (and before session_start() or session_register() are called).

Example 1. session_name() examples

<?php

set the session name to WebsiteID

$previous_name = session_name ("WebsiteID");

echo "The previous session name was $previous_name<p>";

?>

Note: This function was added in PHP 4.0.

session_module_name (PHP4)

Get and/or set the current session module

string session_module_name ([string module])

 session_module_name() returns the name of the current session module. If module is specified, that module will be used instead.

Note: This function was added in PHP 4.0.

session_save_path (PHP4)

Get and/or set the current session save path

string session_save_path ([string path])

 session_save_path() returns the path of the current directory used to save session data. If path is specified, the path to which data is saved will be changed.

Note: On some operating systems, you may want to specify a path on a filesystem that handles lots of small files efficiently. For example, on Linux, reiserfs may provide better performance than ext2fs.

Note: This function was added in PHP 4.0.

session_id (PHP4)

Get and/or set the current session id

string session_id ([string id])

 session_id() returns the session id for the current session. If id is specified, it will replace the current session id.

 The constant SID can also be used to retrieve the current name and session id as a string suitable for adding to URLs.

session_register (PHP4)

 Register one or more variables with the current session

bool session_register (mixed name [, mixed ...])

 session_register() variable number of arguments, any of which can be either a string holding the variable name or an array consisting of such variable names or other arrays. For each encountered variable name, session_register() registers the global variable named by it with the current session.

 This function returns true when the variable is successfully registered with the session.

Note: This function was added in PHP 4.0.

session_unregister (PHP4)

 Unregister a variable from the current session

bool session_unregister (string name)

 session_unregister() unregisters (forgets) the global variable named name from the current session.

 This function returns true when the variable is successfully unregistered from the session.

Note: This function was added in PHP 4.0.

session_unset (PHP4 >= 4.0b4)

 Free all session variables

void session_unset(void);

 The session_unset() function free's all session variables currently registered.

session_is_registered (PHP4)

 Find out if a variable is registered in a session

bool session_is_registered (string name)

 session_is_registered() returns true if there is a variable with the name name registered in the current session.

Note: This function was added in PHP 4.0.

session_get_cookie_params (PHP4 >= 4.0RC2)

 Get the session cookie parameters

 array session_get_cookie_params (void);

 The session_get_cookie_params() function returns an array with the current session cookie information, the array contains the following items:

•
 "lifetime" - The lifetime of the cookie.

•
 "path" - The path where information is stored.

•
 "domain" - The domain of the cookie.

session_set_cookie_params (PHP4 >= 4.0b4)

 Set the session cookie parameters

void session_set_cookie_params (int lifetime [, string path [, string domain]])

 Set cookie parameters defined in the php.ini file. The effect of this function only lasts for the duration of the script.

session_decode (PHP4)

Decodes session data from a string

bool session_decode (string data)

 session_decode() decodes the session data in data, setting variables stored in the session.

Note: This function was added in PHP 4.0.

session_encode (PHP4)

 Encodes the current session data as a string

bool session_encode(void);

 session_encode() returns a string with the contents of the current session encoded within.

Note: This function was added in PHP 4.0.

LVIII. Shockwave Flash functions

 PHP offers the ability to create Shockwave Flash files via Paul Haeberli's libswf module. You can download libswf at http://reality.sgi.com/grafica/flash/. Once you have libswf all you need to do is to configure --with-swf[=DIR] where DIR is a location containing the directories include and lib. The include directory has to contain the swf.h file and the lib directory has to contain the libswf.a file. If you unpack the libswf distribution the two files will be in one directory. Consequently you will have to copy the files to the proper location manually.

 Once you've successfully installed PHP with Shockwave Flash support you can then go about creating Shockwave files from PHP. You would be surprised at what you can do, take the following code:

Example 1. SWF example

<?php

swf_openfile ("test.swf", 256, 256, 30, 1, 1, 1);

swf_ortho2 (-100, 100, -100, 100);

swf_defineline (1, -70, 0, 70, 0, .2);

swf_definerect (4, 60, -10, 70, 0, 0);

swf_definerect (5, -60, 0, -70, 10, 0);

swf_addcolor (0, 0, 0, 0);

swf_definefont (10, "Mod");

swf_fontsize (5);

swf_fontslant (10);

swf_definetext (11, "This be Flash wit PHP!", 1);

swf_pushmatrix ();

swf_translate (-50, 80, 0);

swf_placeobject (11, 60);

swf_popmatrix ();

for ($i = 0; $i < 30; $i++) {

 $p = $i/(30-1);

 swf_pushmatrix ();

 swf_scale (1-($p*.9), 1, 1);

 swf_rotate (60*$p, 'z');

 swf_translate (20+20*$p, $p/1.5, 0);

 swf_rotate (270*$p, 'z');

 swf_addcolor ($p, 0, $p/1.2, -$p);

 swf_placeobject (1, 50);

 swf_placeobject (4, 50);

 swf_placeobject (5, 50);

 swf_popmatrix ();

 swf_showframe ();

}

for ($i = 0; $i < 30; $i++) {

 swf_removeobject (50);

 if (($i%4) == 0) {

 swf_showframe ();

 }

}

swf_startdoaction ();

swf_actionstop ();

swf_enddoaction ();

swf_closefile ();

?>

 It will produce the animation found at the following url (http://www.designmultimedia.com/swfphp/test.swf).

Note: SWF support was added in PHP4 RC2.

swf_openfile (PHP4 >= 4.0RC2)

Open a new Shockwave Flash file

void swf_openfile (string filename, float width, float height, float framerate, float r, float g, float b)

 The swf_openfile() function opens a new file named filename with a width of width and a height of height a frame rate of framerate and background with a red color of r a green color of g and a blue color of b.

 The swf_openfile() must be the first function you call, otherwise your script will cause a segfault. If you want to send your output to the screen make the filename: "php://stdout" (support for this is in 4.0.1 and up).

swf_closefile (PHP4 >= 4.0RC2)

Close the current Shockwave Flash file

void swf_closefile (void);

 Close a file that was opened by the swf_openfile() function.

swf_labelframe (PHP4 >= 4.0RC2)

Label the current frame

void swf_labelframe (string name)

 Label the current frame with the name given by the name parameter.

swf_showframe (PHP4 >= 4.0RC2)

Display the current frame

void swf_showframe (void);

 The swf_showframe function will output the current frame.

swf_setframe (PHP4 >= 4.0RC2)

Switch to a specified frame

void swf_setframe (int framenumber)

 The swf_setframe() changes the active frame to the frame specified by framenumber.

swf_getframe (PHP4 >= 4.0RC2)

Get the frame number of the current frame

int swf_getframe (void);

 The swf_getframe() function gets the number of the current frame.

swf_mulcolor (PHP4 >= 4.0RC2)

 Sets the global multiply color to the rgba value specified

void swf_mulcolor (float r, float g, float b, float a)

 The swf_mulcolor() function sets the global multiply color to the rgba color specified. This color is then used (implicitly) by the swf_placeobject(), swf_modifyobject() and the swf_addbuttonrecord() functions. The color of the object will be multiplied by the rgba values when the object is written to the screen.

Note: The rgba values can be either positive or negative.

swf_addcolor (PHP4 >= 4.0RC2)

 Set the global add color to the rgba value specified

void swf_addcolor (float r, float g, float b, float a)

 The swf_addcolor() function sets the global add color to the rgba color specified. This color is then used (implicitly) by the swf_placeobject(), swf_modifyobject() and the swf_addbuttonrecord() functions. The color of the object will be add by the rgba values when the object is written to the screen.

Note: The rgba values can be either positive or negative.

swf_placeobject (PHP4 >= 4.0RC2)

Place an object onto the screen

void swf_placeobject (int objid, int depth)

 Places the object specified by objid in the current frame at a depth of depth. The objid parameter and the depth must be between 1 and 65535.

 This uses the current mulcolor (specified by swf_mulcolor()) and the current addcolor (specified by swf_addcolor()) to color the object and it uses the current matrix to position the object.

Note: Full RGBA colors are supported.

swf_modifyobject (PHP4 >= 4.0RC2)

Modify an object

void swf_modifyobject (int depth, int how)

 Updates the position and/or color of the object at the specified depth, depth. The parameter how determines what is updated. how can either be the constant MOD_MATRIX or MOD_COLOR or it can be a combination of both (MOD_MATRIX|MOD_COLOR).

 MOD_COLOR uses the current mulcolor (specified by the function swf_mulcolor()) and addcolor (specified by the function swf_addcolor()) to color the object. MOD_MATRIX uses the current matrix to position the object.

swf_removeobject (PHP4 >= 4.0RC2)

Remove an object

void swf_removeobject (int depth)

 Removes the object at the depth specified by depth.

swf_nextid (PHP4 >= 4.0RC2)

Returns the next free object id

int swf_nextid (void);

 The swf_nextid() function returns the next available object id.

swf_startdoaction (PHP4 >= 4.0RC2)

 Start a description of an action list for the current frame

void swf_startdoaction (void);

 The swf_startdoaction() function starts the description of an action list for the current frame. This must be called before actions are defined for the current frame.

swf_actiongotoframe (PHP4 >= 4.0RC2)

Play a frame and then stop

void swf_actiongotoframe (int framenumber)

 The swf_actionGotoFrame() function will go to the frame specified by framenumber, play it, and then stop.

swf_actiongeturl (PHP4 >= 4.0RC2)

Get a URL from a Shockwave Flash movie

void swf_actiongeturl (string url, string target)

 The swf_actionGetUrl() function gets the URL specified by the parameter url with the target target.

swf_actionnextframe (PHP4 >= 4.0RC2)

Go foward one frame

void swf_actionnextframe (void);

 Go foward one frame.

swf_actionprevframe (PHP4 >= 4.0RC2)

Go backwards one frame

void swf_actionprevframe (void);

swf_actionplay (PHP4 >= 4.0RC2)

 Start playing the flash movie from the current frame

void swf_actionplay (void);

 Start playing the flash movie from the current frame.

swf_actionstop (PHP4 >= 4.0RC2)

 Stop playing the flash movie at the current frame

void swf_actionstop (void);

 Stop playing the flash movie at the current frame.

swf_actiontogglequality (PHP4 >= 4.0RC2)

 Toggle between low and high quality

void swf_actiontogglequality (void);

 Toggle the flash movie between high and low quality.

swf_actionwaitforframe (PHP4 >= 4.0RC2)

 Skip actions if a frame has not been loaded

void swf_actionwaitforframe (int framenumber, int skipcount)

 The swf_actionWaitForFrame() function will check to see if the frame, specified by the framenumber parameter has been loaded, if not it will skip the number of actions specified by the skipcount parameter. This can be useful for "Loading..." type animations.

swf_actionsettarget (PHP4 >= 4.0RC2)

Set the context for actions

void swf_actionsettarget (string target)

 The swf_actionSetTarget() function sets the context for all actions. You can use this to control other flash movies that are currently playing.

swf_actiongotolabel (PHP4 >= 4.0RC2)

 Display a frame with the specified label

void swf_actiongotolabel (string label)

 The swf_actionGotoLabel() function displays the frame with the label given by the label parameter and then stops.

swf_enddoaction (PHP4 >= 4.0RC2)

End the current action

void swf_enddoaction (void);

 Ends the current action started by the swf_startdoaction() function.

swf_defineline (PHP4 >= 4.0RC2)

Define a line

void swf_defineline (int objid, float x1, float y1, float x2, float y2, float width)

 The swf_defineline() defines a line starting from the x coordinate given by x1 and the y coordinate given by y1 parameter. Up to the x coordinate given by the x2 parameter and the y coordinate given by the y2 parameter. It will have a width defined by the width parameter.

swf_definerect (PHP4 >= 4.0RC2)

Define a rectangle

void swf_definerect (int objid, float x1, float y1, float x2, float y2, float width)

 The swf_definerect() defines a rectangle with an upper left hand coordinate given by the x, x1, and the y, y1. And a lower right hand coordinate given by the x coordinate, x2, and the y coordinate, y2 . Width of the rectangles border is given by the width parameter, if the width is 0.0 then the rectangle is filled.

swf_definepoly (PHP4 >= 4.0.0)

 Define a polygon

void swf_definepoly (int objid, array coords, int npoints, float width)

 The swf_definepoly() function defines a polygon given an array of x, y coordinates (the coordinates are defined in the parameter coords). The parameter npoints is the number of overall points that are contained in the array given by coords. The width is the width of the polygon's border, if set to 0.0 the polygon is filled.

swf_startshape (PHP4 >= 4.0RC2)

Start a complex shape

void swf_startshape (int objid)

 The swf_startshape() function starts a complex shape, with an object id given by the objid parameter.

swf_shapelinesolid (PHP4 >= 4.0RC2)

Set the current line style

void swf_shapelinesolid (float r, float g, float b, float a, float width)

 The swf_shapeLineSolid() function sets the current line style to the color of the rgba parameters and width to the width parameter. If 0.0 is given as a width then no lines are drawn.

swf_shapefilloff (PHP4 >= 4.0RC2)

Turns off filling

void swf_shapefilloff (void);

 The swf_shapeFillOff() function turns off filling for the current shape.

swf_shapefillsolid (PHP4 >= 4.0RC2)

 Set the current fill style to the specified color

void swf_shapefillsolid (float r, float g, float b, float a)

 The swf_shapeFillSolid() function sets the current fill style to solid, and then sets the fill color to the values of the rgba parameters.

swf_shapefillbitmapclip (PHP4 >= 4.0RC2)

 Set current fill mode to clipped bitmap

void swf_shapefillbitmapclip (int bitmapid)

 Sets the fill to bitmap clipped, empty spaces will be filled by the bitmap given by the bitmapid parameter.

swf_shapefillbitmaptile (PHP4 >= 4.0RC2)

 Set current fill mode to tiled bitmap

void swf_shapefillbitmaptile (int bitmapid)

 Sets the fill to bitmap tile, empty spaces will be filled by the bitmap given by the bitmapid parameter (tiled).

swf_shapemoveto (PHP4 >= 4.0RC2)

Move the current position

void swf_shapemoveto (float x, float y)

 The swf_shapeMoveTo() function moves the current position to the x coordinate given by the x parameter and the y position given by the y parameter.

swf_shapelineto (PHP4 >= 4.0RC2)

Draw a line

void swf_shapelineto (float x, float y)

 The swf_shapeLineTo() draws a line to the x,y coordinates given by the x parameter & the y parameter. The current position is then set to the x,y parameters.

swf_shapecurveto (PHP4 >= 4.0RC2)

 Draw a quadratic bezier curve between two points

void swf_shapecurveto (float x1, float y1, float x2, float y2)

 The swf_shapecurveto() function draws a quadratic bezier curve from the x coordinate given by x1 and the y coordinate given by y1 to the x coordinate given by x2 and the y coordinate given by y2. The current position is then set to the x,y coordinates given by the x2 and y2 parameters

swf_shapecurveto3 (PHP4 >= 4.0RC2)

Draw a cubic bezier curve

void swf_shapecurveto3 (float x1, float y1, float x2, float y2, float x3, float y3)

 Draw a cubic bezier curve using the x,y coordinate pairs x1, y1 and x2,y2 as off curve control points and the x,y coordinate x3, y3 as an endpoint. The current position is then set to the x,y coordinate pair given by x3,y3.

swf_shapearc (PHP4 >= 4.0RC2)

Draw a circular arc

void swf_shapearc (float x, float y, float r, float ang1, float ang2)

 The swf_shapeArc() function draws a circular arc from angle A given by the ang1 parameter to angle B given by the ang2 parameter. The center of the circle has an x coordinate given by the x parameter and a y coordinate given by the y, the radius of the circle is given by the r parameter.

swf_endshape (PHP4 >= 4.0RC2)

 Completes the definition of the current shape

void swf_endshape (void);

 The swf_endshape() completes the definition of the current shape.

swf_definefont (PHP4 >= 4.0RC2)

 Defines a font

void swf_definefont (int fontid, string fontname)

 The swf_definefont() function defines a font given by the fontname parameter and gives it the id specified by the fontid parameter. It then sets the font given by fontname to the current font.

swf_setfont (PHP4 >= 4.0RC2)

Change the current font

void swf_setfont (int fontid)

 The swf_setfont() sets the current font to the value given by the fontid parameter.

swf_fontsize (PHP4 >= 4.0RC2)

Change the font size

void swf_fontsize (float size)

 The swf_fontsize() function changes the font size to the value given by the size parameter.

swf_fontslant (PHP4 >= 4.0RC2)

Set the font slant

void swf_fontslant (float slant)

 Set the current font slant to the angle indicated by the slant parameter. Positive values create a foward slant, negative values create a negative slant.

swf_fonttracking (PHP4 >= 4.0RC2)

Set the current font tracking

void swf_fonttracking (float tracking)

 Set the font tracking to the value specified by the tracking parameter. This function is used to increase the spacing between letters and text, positive values increase the space and negative values decrease the space between letters.

swf_getfontinfo (PHP4 >= 4.0RC2)

 The height in pixels of a capital A and a lowercase x

array swf_getfontinfo (void);

 The swf_getfontinfo() function returns an associative array with the following parameters:

•
 Aheight - The height in pixels of a capital A.

•
 xheight - The height in pixels of a lowercase x.

swf_definetext (PHP4 >= 4.0RC2)

Define a text string

void swf_definetext (int objid, string str, int docenter)

 Define a text string (the str parameter) using the current font and font size. The docenter is where the word is centered, if docenter is 1, then the word is centered in x.

swf_textwidth (PHP4 >= 4.0RC2)

Get the width of a string

float swf_textwidth (string str)

 The swf_textwidth() function gives the width of the string, str, in pixels, using the current font and font size.

swf_definebitmap (PHP4 >= 4.0RC2)

Define a bitmap

void swf_definebitmap (int objid, string image_name)

 The swf_definebitmap() function defines a bitmap given a GIF, JPEG, RGB or FI image. The image will be converted into a Flash JPEG or Flash color map format.

swf_getbitmapinfo (PHP4 >= 4.0RC2)

Get information about a bitmap

array swf_getbitmapinfo (int bitmapid)

 The swf_getbitmapinfo() function returns an array of information about a bitmap given by the bitmapid parameter. The returned array has the following elements:

•
 "size" - The size in bytes of the bitmap.

•
 "width" - The width in pixels of the bitmap.

•
 "height" - The height in pixels of the bitmap.

swf_startsymbol (PHP4 >= 4.0RC2)

Define a symbol

void swf_startsymbol (int objid)

 Define an object id as a symbol. Symbols are tiny flash movies that can be played simultaneously. The objid parameter is the object id you want to define as a symbol.

swf_endsymbol (PHP4 >= 4.0RC2)

End the definition of a symbol

void swf_endsymbol (void);

 The swf_endsymbol() function ends the definition of a symbol that was started by the swf_startsymbol() function.

swf_startbutton (PHP4 >= 4.0RC2)

Start the definition of a button

void swf_startbutton (int objid, int type)

 The swf_startbutton() function starts off the definition of a button. The type parameter can either be TYPE_MENUBUTTON or TYPE_PUSHBUTTON. The TYPE_MENUBUTTON constant allows the focus to travel from the button when the mouse is down, TYPE_PUSHBUTTON does not allow the focus to travel when the mouse is down.

swf_addbuttonrecord (PHP4 >= 4.0RC2)

 Controls location, appearance and active area of the current button

void swf_addbuttonrecord (int states, int shapeid, int depth)

 The swf_addbuttonrecord() function allows you to define the specifics of using a button. The first parameter, states, defines what states the button can have, these can be any or all of the following constants: BSHitTest, BSDown, BSOver or BSUp. The second parameter, the shapeid is the look of the button, this is usually the object id of the shape of the button. The depth parameter is the placement of the button in the current frame.

Example 1. Swf_addbuttonrecord() function example

swf_startButton ($objid, TYPE_MENUBUTTON);

 swf_addButtonRecord (BSDown|BSOver, $buttonImageId, 340);

 swf_onCondition (MenuEnter);

 swf_actionGetUrl ("http://www.designmultimedia.com", "_level1");

 swf_onCondition (MenuExit);

 swf_actionGetUrl ("", "_level1");

swf_endButton ();

swf_oncondition (PHP4 >= 4.0RC2)

 Describe a transition used to trigger an action list

void swf_oncondition (int transition)

 The swf_onCondition() function describes a transition that will trigger an action list. There are several types of possible transitions, the following are for buttons defined as TYPE_MENUBUTTON:

•
 IdletoOverUp

•
 OverUptoIdle

•
 OverUptoOverDown

•
 OverDowntoOverUp

•
 IdletoOverDown

•
 OutDowntoIdle

•
 MenuEnter (IdletoOverUp|IdletoOverDown)

•
 MenuExit (OverUptoIdle|OverDowntoIdle)

 For TYPE_PUSHBUTTON there are the following options:

•
 IdletoOverUp

•
 OverUptoIdle

•
 OverUptoOverDown

•
 OverDowntoOverUp

•
 OverDowntoOutDown

•
 OutDowntoOverDown

•
 OutDowntoIdle

•
 ButtonEnter (IdletoOverUp|OutDowntoOverDown)

•
 ButtonExit (OverUptoIdle|OverDowntoOutDown)

swf_endbutton (PHP4 >= 4.0RC2)

 End the definition of the current button

void swf_endbutton (void);

 The swf_endButton() function ends the definition of the current button.

swf_viewport (PHP4 >= 4.0RC2)

Select an area for future drawing

void swf_viewport (double xmin, double xmax, double ymin, double ymax)

 The swf_viewport() function selects an area for future drawing for xmin to xmax and ymin to ymax, if this function is not called the area defaults to the size of the screen.

swf_ortho (PHP4 >= 4.0.1)

 Defines an orthographic mapping of user coordinates onto the current viewport

void swf_ortho (double xmin, double xmax, double ymin, double ymax, double zmin, double zmax)

 The swf_ortho() funcion defines a orthographic mapping of user coordinates onto the current viewport.

swf_ortho2 (PHP4 >= 4.0RC2)

 Defines 2D orthographic mapping of user coordinates onto the current viewport

void swf_ortho2 (double xmin, double xmax, double ymin, double ymax)

 The swf_ortho2() function defines a two dimensional orthographic mapping of user coordinates onto the current viewport, this defaults to one to one mapping of the area of the Flash movie. If a perspective transformation is desired, the swf_perspective () function can be used.

swf_perspective (PHP4 >= 4.0RC2)

 Define a perspective projection transformation

void swf_perspective (double fovy, double aspect, double near, double far)

 The swf_perspective() function defines a perspective projection transformation. The fovy parameter is field-of-view angle in the y direction. The aspect parameter should be set to the aspect ratio of the viewport that is being drawn onto. The near parameter is the near clipping plane and the far parameter is the far clipping plane.

Note: Various distortion artifacts may appear when performing a perspective projection, this is because Flash players only have a two dimensional matrix. Some are not to pretty.

swf_polarview (PHP4 >= 4.0RC2)

 Define the viewer's position with polar coordinates

void swf_polarview (double dist, double azimuth, double incidence, double twist)

 The swf_polarview() function defines the viewer's position in polar coordinates. The dist parameter gives the distance between the viewpoint to the world space origin. The azimuth parameter defines the azimuthal angle in the x,y coordinate plane, measured in distance from the y axis. The incidence parameter defines the angle of incidence in the y,z plane, measured in distance from the z axis. The incidence angle is defined as the angle of the viewport relative to the z axis. Finally the twist specifies the amount that the viewpoint is to be rotated about the line of sight using the right hand rule.

swf_lookat (PHP4 >= 4.0RC2)

Define a viewing transformation

void swf_lookat (double view_x, double view_y, double view_z, double reference_x, double reference_y, double reference_z, double twist)

 The swf_lookat() function defines a viewing transformation by giving the viewing position (the parameters view_x, view_y, and view_z) and the coordinates of a reference point in the scene, the reference point is defined by the reference_x, reference_y , and reference_z parameters. The twist controls the rotation along with viewer's z axis.

swf_pushmatrix (PHP4 >= 4.0RC2)

 Push the current transformation matrix back unto the stack

void swf_pushmatrix (void);

 The swf_pushmatrix() function pushes the current transformation matrix back onto the stack.

swf_popmatrix (PHP4 >= 4.0RC2)

 Restore a previous transformation matrix

void swf_popmatrix (void);

 The swf_popmatrix() function pushes the current transformation matrix back onto the stack.

swf_scale (PHP4 >= 4.0RC2)

Scale the current transformation

void swf_scale (double x, double y, double z)

 The swf_scale() scales the x coordinate of the curve by the value of the x parameter, the y coordinate of the curve by the value of the y parameter, and the z coordinate of the curve by the value of the z parameter.

swf_translate (PHP4 >= 4.0RC2)

Translate the current transformations

void swf_translate (double x, double y, double z)

 The swf_translate() function translates the current transformation by the x, y, and z values given.

swf_rotate (PHP4 >= 4.0RC2)

Rotate the current transformation

void swf_rotate (double angle, string axis)

 The swf_rotate() rotates the current transformation by the angle given by the angle parameter around the axis given by the axis parameter. Valid values for the axis are 'x' (the x axis), 'y' (the y axis) or 'z' (the z axis).

swf_posround (PHP4 >= 4.0RC2)

 Enables or Disables the rounding of the translation when objects are placed or moved

void swf_posround (int round)

 The swf_posround() function enables or disables the rounding of the translation when objects are placed or moved, there are times when text becomes more readable because rounding has been enabled. The round is whether to enable rounding or not, if set to the value of 1, then rounding is enabled, if set to 0 then rounding is disabled.

LIX. SNMP functions

 In order to use the SNMP functions on Unix you need to install the UCD SNMP (http://ucd-snmp.ucdavis.edu/) package. On Windows these functions are only available on NT and not on Win95/98.

 Important: In order to use the UCD SNMP package, you need to define NO_ZEROLENGTH_COMMUNITY to 1 before compiling it. After configuring UCD SNMP, edit config.h and search for NO_ZEROLENGTH_COMMUNITY. Uncomment the #define line. It should look like this afterwards:

#define NO_ZEROLENGTH_COMMUNITY 1

 If you see strange segmentation faults in combination with SNMP commands, you did not follow the above instructions. If you do not want to recompile UCD SNMP, you can compile PHP with the --enable-ucd-snmp-hack switch which will work around the misfeature.

snmpget (PHP3 , PHP4)

Fetch an SNMP object

string snmpget (string hostname, string community, string object_id [, int timeout [, int retries]])

 Returns SNMP object value on success and false on error.

 The snmpget() function is used to read the value of an SNMP object specified by the object_id. SNMP agent is specified by the hostname and the read community is specified by the community parameter.

$syscontact = snmpget("127.0.0.1", "public", "system.SysContact.0");

snmpset (PHP3 >= 3.0.12, PHP4 >= 4.0b2)

Set an SNMP object

bool snmpset (string hostname, string community, string object_id, string type, mixed value [, int timeout [, int retries]])

 Sets the specified SNMP object value, returning true on success and false on error.

 The snmpset() function is used to set the value of an SNMP object specified by the object_id. SNMP agent is specified by the hostname and the read community is specified by the community parameter.

snmpwalk (PHP3 , PHP4)

Fetch all the SNMP objects from an agent

array snmpwalk (string hostname, string community, string object_id [, int timeout [, int retries]])

 Returns an array of SNMP object values starting from the object_id() as root and false on error.

 snmpwalk() function is used to read all the values from an SNMP agent specified by the hostname. Community specifies the read community for that agent. A null object_id is taken as the root of the SNMP objects tree and all objects under that tree are returned as an array. If object_id is specified, all the SNMP objects below that object_id are returned.

$a = snmpwalk("127.0.0.1", "public", "");

 Above function call would return all the SNMP objects from the SNMP agent running on localhost. One can step through the values with a loop

for ($i=0; $i<count($a); $i++) {

 echo $a[$i];

}

snmpwalkoid (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Query for a tree of information about a network entity

array snmpwalkoid (string hostname, string community, string object_id [, int timeout [, int retries]])

 Returns an associative array with object ids and their respective object value starting from the object_id as root and false on error.

 snmpwalkoid() function is used to read all object ids and their respective values from an SNMP agent specified by the hostname. Community specifies the read community for that agent. A null object_id is taken as the root of the SNMP objects tree and all objects under that tree are returned as an array. If object_id is specified, all the SNMP objects below that object_id are returned.

 The existence of snmpwalkoid() and snmpwalk() has historical reasons. Both functions are provided for backward compatibility.

$a = snmpwalkoid("127.0.0.1", "public", "");

 Above function call would return all the SNMP objects from the SNMP agent running on localhost. One can step through the values with a loop

for (reset($a); $i = key($a); next($a)) {

 echo "$i: $a[$i]
\n";

}

snmp_get_quick_print (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Fetch the current value of the UCD library's quick_print setting

boolean snmp_get_quick_print (void)

 Returns the current value stored in the UCD Library for quick_print. quick_print is off by default.

$quickprint = snmp_get_quick_print();

 Above function call would return false if quick_print is on, and true if quick_print is on.

 snmp_get_quick_print() is only available when using the UCD SNMP library. This function is not available when using the Windows SNMP library.

 See: snmp_set_quick_print() for a full description of what quick_print does.

snmp_set_quick_print (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Set the value of quick_print within the UCD SNMP library.

void snmp_set_quick_print (boolean quick_print)

 Sets the value of quick_print within the UCD SNMP library. When this is set (1), the SNMP library will return 'quick printed' values. This means that just the value will be printed. When quick_print is not enabled (default) the UCD SNMP library prints extra information including the type of the value (i.e. IpAddress or OID). Additionally, if quick_print is not enabled, the library prints additional hex values for all strings of three characters or less.

 Setting quick_print is often used when using the information returned rather then displaying it.

snmp_set_quick_print(0);

$a = snmpget("127.0.0.1", "public", ".1.3.6.1.2.1.2.2.1.9.1");

echo "$a
\n";

snmp_set_quick_print(1);

$a = snmpget("127.0.0.1", "public", ".1.3.6.1.2.1.2.2.1.9.1");

echo "$a
\n";

 The first value printed might be: 'Timeticks: (0) 0:00:00.00', whereas with quick_print enabled, just '0:00:00.00' would be printed.

 By default the UCD SNMP library returns verbose values, quick_print is used to return only the value.

 Currently strings are still returned with extra quotes, this will be corrected in a later release.

 snmp_set_quick_print() is only available when using the UCD SNMP library. This function is not available when using the Windows SNMP library.

LX. String functions

 These functions all manipulate strings in various ways. Some more specialized sections can be found in the regular expression and URL handling sections.

AddCSlashes (PHP4 >= 4.0b4)

Quote string with slashes in a C style

string addcslashes (string str, string charlist)

 Returns a string with backslashes before characters that are listed in charlist parameter. It escapes \n, \r etc. in C-like style, characters with ASCII code lower than 32 and higher than 126 are converted to octal representation. Be carefull when escaping alphanumeric characters. You can specify a range in charlist like "\0..\37", which would escape all characters with ASCII code between 0 and 31.

Example 1. Addcslashes() example

$escaped = addcslashes ($not_escaped, "\0..\37!@\177..\377");

Note: Added in PHP4b3-dev.

 See also stripcslashes(), stripslashes(), htmlspecialchars(), htmlspecialchars(), and quotemeta().

AddSlashes (PHP3 , PHP4)

Quote string with slashes

string addslashes (string str)

 Returns a string with backslashes before characters that need to be quoted in database queries etc. These characters are single quote ('), double quote ("), backslash (\) and NUL (the null byte).

 See also stripslashes(), htmlspecialchars(), and quotemeta().

bin2hex (PHP3 >= 3.0.9, PHP4)

 Convert binary data into hexadecimal representation

string bin2hex (string str)

 Returns an ASCII string containing the hexadecimal representation of str. The conversion is done byte-wise with the high-nibble first.

Chop (PHP3 , PHP4)

Remove trailing whitespace

string chop (string str)

 Returns the argument string without trailing whitespace, including newlines.

Example 1. Chop() example

$trimmed = chop ($line);

 See also trim().

Chr (PHP3 , PHP4)

Return a specific character

string chr (int ascii)

 Returns a one-character string containing the character specified by ascii.

Example 1. Chr() example

$str .= chr (27); /* add an escape character at the end of $str */

/* Often this is more useful */

$str = sprintf ("The string ends in escape: %c", 27);

 This function complements ord(). See also sprintf() with a format string of %c.

chunk_split (PHP3 >= 3.0.6, PHP4)

Split a string into smaller chunks

string chunk_split (string string [, int chunklen [, string end]])

 Can be used to split a string into smaller chunks which is useful for e.g. converting base64_encode output to match RFC 2045 semantics. It inserts every chunklen (defaults to 76) chars the string end (defaults to "\r\n"). It returns the new string leaving the original string untouched.

Example 1. Chunk_split() example

format $data using RFC 2045 semantics

$new_string = chunk_split (base64_encode($data));

 This function is significantly faster than ereg_replace().

Note: This function was added in 3.0.6.

convert_cyr_string (PHP3 >= 3.0.6, PHP4)

 Convert from one Cyrillic character set to another

string convert_cyr_string (string str, string from, string to)

 This function converts the given string from one Cyrillic character set to another. The from and to arguments are single characters that represent the source and target Cyrillic character sets. The supported types are:

•
 k - koi8-r

•
 w - windows-1251

•
 i - iso8859-5

•
 a - x-cp866

•
 d - x-cp866

•
 m - x-mac-cyrillic

count_chars (PHP4 >= 4.0b4)

 Return information abouts characters used in a string

mixed count_chars (string string [, mode])

 Counts the number of occurances of every byte-value (0..255) in string and returns it in various ways. The optional parameter Mode default to 0. Depending on mode count_chars() returns one of the following:

•
 0 - an array with the byte-value as key and the freqency of every byte as value.

•
 1 - same as 0 but only byte-values with a frequency greater than zero are listed.

•
 2 - same as 0 but only byte-values with a frequency equal to zero are listed.

•
 3 - a string containing all used byte-values is returned.

•
 4 - a string containing all not used byte-values is returned.

Note: This function was added in PHP 4.0.

crc32 (PHP4 >= 4.0.1)

Calculates the crc32 polynomial of a string

int crc32 (string str)

 Generates the cyclic redundancy checksum polynomial of 32-bit lengths of the str. This is usually used to validate the integrity of data being trasmited.

 See also: md5()

crypt (PHP3 , PHP4)

DES-encrypt a string

string crypt (string str [, string salt])

 crypt() will encrypt a string using the standard Unix DES encryption method. Arguments are a string to be encrypted and an optional two-character salt string to base the encryption on. See the Unix man page for your crypt function for more information.

 If the salt argument is not provided, it will be randomly generated by PHP.

 Some operating systems support more than one type of encryption. In fact, sometimes the standard DES encryption is replaced by an MD5 based encryption algorithm. The encryption type is triggered by the salt argument. At install time, PHP determines the capabilities of the crypt function and will accept salts for other encryption types. If no salt is provided, PHP will auto-generate a standard 2-character DES salt by default unless the default encryption type on the system is MD5 in which case a random MD5-compatible salt is generated. PHP sets a constant named CRYPT_SALT_LENGTH which tells you whether a regular 2-character salt applies to your system or the longer 12-char MD5 salt is applicable.

 The standard DES encryption crypt() contains the salt as the first two characters of the output.

 On systems where the crypt() function supports multiple encryption types, the following constants are set to 0 or 1 depending on whether the given type is available:

•
 CRYPT_STD_DES - Standard DES encryption with a 2-char SALT

•
 CRYPT_EXT_DES - Extended DES encryption with a 9-char SALT

•
 CRYPT_MD5 - MD5 encryption with a 12-char SALT starting with 1

•
 CRYPT_BLOWFISH - Extended DES encryption with a 16-char SALT starting with 2

 There is no decrypt function, since crypt() uses a one-way algorithm.

 See also: md5().

echo (unknown)

Output one or more strings

echo (string arg1, string [argn]...)

 Outputs all parameters.

 Echo() is not actually a function (it is a language construct) so you are not required to use parantheses with it.

Example 1. Echo() example

echo "Hello World";

echo "This spans

multiple lines. The newlines will be

output as well";

echo "This spans\nmultiple lines. The newlines will be\noutput as well.";

Note: In fact, if you want to pass more than one parameter to echo, you must not enclose the parameters within parentheses.

 See also: print(), printf(), and flush().

explode (PHP3 , PHP4)

Split a string by string

array explode (string separator, string string [, int limit])

 Returns an array of strings, each of which is a substring of string formed by splitting it on boundaries formed by the string delim. If limit is set, the returned array will contaion a maximum of limit elements with the last element containing the whole rest of string.

Example 1. Explode() example

$pizza = "piece1 piece2 piece3 piece4 piece5 piece6";

$pieces = explode (" ", $pizza);

 See also split() and implode().

flush (PHP3 , PHP4)

Flush the output buffer

void flush(void);

 Flushes the output buffers of PHP and whatever backend PHP is using (CGI, a web server, etc.) This effectively tries to push all the output so far to the user's browser.

get_html_translation_table (PHP4 >= 4.0b4)

 Returns the translation table used by htmlspecialchars() and htmlentities()

string get_html_translation_table (int table)

 get_html_translation_table() will return the translation table that is used internally for htmlspecialchars() and htmlentities(). Ther are two new defines (HTML_ENTITIES, HTML_SPECIALCHARS) that allow you to specify the table you want.

Example 1. Translation Table Example

$trans = get_html_translation_table (HTML_ENTITIES);

$str = "Hallo & <Frau> & Krämer";

$encoded = strtr ($str, $trans);

 The $encoded variable will now contain: "Hallo & <Frau> & Krämer".

 The cool thing is using array_flip() to change the direction of the translation.

$trans = array_flip ($trans);

$original = strtr ($str, $trans);

 The content of $original would be: "Hallo & <Frau> & Krämer".

Note: This function was added in PHP 4.0.

 See also: htmlspecialchars(), htmlentities(), strtr(), and array_flip().

get_meta_tags (PHP3 >= 3.0.4, PHP4)

 Extracts all meta tag content attributes from a file and returns an array

array get_meta_tags (string filename [, int use_include_path])

 Opens filename and parses it line by line for <meta> tags of the form

Example 1. Meta Tags Example

<meta name="author" content="name">

<meta name="tags" content="php3 documentation">

</head> <!-- parsing stops here -->

 (pay attention to line endings - PHP uses a native function to parse the input, so a Mac file won't work on Unix).

 The value of the name property becomes the key, the value of the content property becomes the value of the returned array, so you can easily use standard array functions to traverse it or access single values. Special characters in the value of the name property are substituted with '_', the rest is converted to lower case.

 Setting use_include_path to 1 will result in PHP trying to open the file along the standard include path.

hebrev (PHP3 , PHP4)

 Convert logical Hebrew text to visual text

string hebrev (string hebrew_text [, int max_chars_per_line])

 The optional parameter max_chars_per_line indicates maximum number of characters per line will be output. The function tries to avoid breaking words.

 See also hebrevc()

hebrevc (PHP3 , PHP4)

 Convert logical Hebrew text to visual text with newline conversion

string hebrevc (string hebrew_text [, int max_chars_per_line])

 This function is similar to hebrev() with the difference that it converts newlines (\n) to "
\n". The optional parameter max_chars_per_line indicates maximum number of characters per line will be output. The function tries to avoid breaking words.

 See also hebrev()

htmlentities (PHP3 , PHP4)

 Convert all applicable characters to HTML entities

string htmlentities (string string)

 This function is identical to Htmlspecialchars() in all ways, except that all characters which have HTML entity equivalents are translated into these entities.

 At present, the ISO-8859-1 character set is used.

 See also htmlspecialchars() and nl2br().

htmlspecialchars (PHP3 , PHP4)

 Convert special characters to HTML entities

string htmlspecialchars (string string)

 Certain characters have special significance in HTML, and should be represented by HTML entities if they are to preserve their meanings. This function returns a string with these conversions made.

 This function is useful in preventing user-supplied text from containing HTML markup, such as in a message board or guest book application.

 At present, the translations that are done are:

•
 '&' (ampersand) becomes '&'

•
 '"' (double quote) becomes '"'

•
 '<' (less than) becomes '<'

•
 '>' (greater than) becomes '>'

 Note that this functions does not translate anything beyond what is listed above. For full entity translation, see htmlentities().

 See also htmlentities() and nl2br().

implode (PHP3 , PHP4)

Join array elements with a string

string implode (string glue, array pieces)

 Returns a string containing a string representation of all the array elements in the same order, with the glue string between each element.

Example 1. Implode() example

$colon_separated = implode (":", $array);

 See also explode(), join(), and split().

join (PHP3 , PHP4)

Join array elements with a string

string join (string glue, array pieces)

 join() is an alias to implode(), and is identical in every way.

 See also explode(), implode(), and split().

levenshtein (PHP3 CVS only, PHP4 >= 4.0.1)

 Calculate Levenshtein distance between two strings

int levenshtein (string str1, string str2)

 This function return the Levenshtein-Distance between the two argument strings or -1, if one of the argument strings is longer than the limit of 255 characters.

 The Levenshtein distance is defined as the minimal number of characters you have to replace, insert or delete to transform str1 into str2. The complexity of the algorithm is O(m*n), where n and m are the length of str1 and str2 (rather good when compared to similar_text(), which is O(max(n,m)**3), but still expensive).

 See also soundex(), similar_text() and metaphone().

ltrim (PHP3 , PHP4)

 Strip whitespace from the beginning of a string

string ltrim (string str)

 This function strips whitespace from the start of a string and returns the stripped string. The whitespace characters it currently strips are: "\n", "\r", "\t", "\v", "\0", and a plain space.

 See also chop() and trim().

md5 (PHP3 , PHP4)

Calculate the md5 hash of a string

string md5 (string str)

 Calculates the MD5 hash of str using the RSA Data Security, Inc. MD5 Message-Digest Algorithm (http://www.faqs.org/rfcs/rfc1321.html).

 See also: crc32()

Metaphone (PHP4 >= 4.0b4)

Calculate the metaphone key of a string

string metaphone (string str)

 Calculates the metaphone key of str.

 Similar to soundex() metaphone creates the same key for similar sounding words. It's more accurate than soundex() as it knows the basic rules of English pronunciation. The metaphone generated keys are of variable length.

 Metaphone was developed by Lawrence Philips <lphilips@verity.com>. It is described in ["Practical Algorithms for Programmers", Binstock & Rex, Addison Wesley, 1995].

Note: This function was added in PHP 4.0.

nl2br (PHP3 , PHP4)

Converts newlines to HTML line breaks

string nl2br (string string)

 Returns string with '
' inserted before all newlines.

 See also htmlspecialchars() and htmlentities().

ob_start (PHP4)

Turn on output buffering

void ob_start(void);

 This function will turn output buffering. While output buffering is active there will be no rel output from the script, the output is appended to an internal buffer instead.

 The contents of this internal buffer may be copied into a string variable using ob_get_contents(). Real output happens when ob_end_flush() is called and ob_end_clean() will just silently discard the buffer contents.

 See also ob_get_contents(), ob_end_flush(), ob_end_clean() and ob_implicit_flush()

ob_get_contents (PHP4)

 Return the contents of the output buffer

string ob_get_contents(void);

 This will return the content of the output buffer or FALSE, if output buffering isn't active.

 See also ob_start(), ob_end_flush(), and ob_end_clean().

ob_end_flush (PHP4)

 Flush (send) the output buffer and turn off output buffering

void ob_end_flush(void);

 This function will send the contents of the output buffer (if any) and turn output buffering off. If you want to further process the buffers content you have to call ob_get_contents() before ob_end_flush() as the buffer contents get discarded after output.

 See also ob_start(), ob_get_contents(), and ob_end_clean().

ob_end_clean (PHP4)

 Clean (erase) the output buffer and turn off output buffering

void ob_end_clean(void);

 This function discards the content of the output buffer and turns off output buffering.

 See also ob_start() and ob_end_flush().

ob_implicit_flush (PHP4 >= 4.0b4)

 Turn implicit flush on/off

void ob_implicit_flush ([int flag])

 ob_implicit_flush() will turn implicit flushing on or off (if no flag is given, it defaults to on). Implicit flushing will result in a flush operation after every output call, so that explicit calls to flush() will no longer be needed.

 Turning implicit flushing on will disable output buffering, the output buffers current output will be sent as if ob_end_flush() had been called.

 See also flush(), ob_start() and ob_end_flush().

Ord (PHP3 , PHP4)

Return ASCII value of character

int ord (string string)

 Returns the ASCII value of the first character of string. This function complements chr().

Example 1. Ord() example

if (ord ($str) == 10) {

 echo "The first character of \$str is a line feed.\n";

}

 See also chr().

parse_str (PHP3 , PHP4)

Parses the string into variables

void parse_str (string str)

 Parses str as if it were the query string passed via an URL and sets variables in the current scope.

Example 1. Using parse_str()

$str = "first=value&second[]=this+works&second[]=another";

parse_str($str);

echo $first; /* prints "value" */

echo $second[0]; /* prints "this works" */

echo $second[1]; /* prints "another" */

print (unknown)

Output a string

print (string arg)

 Outputs arg.

 See also: echo(), printf(), and flush().

printf (PHP3 , PHP4)

Output a formatted string

int printf (string format [, mixed args...])

 Produces output according to format, which is described in the documentation for sprintf().

 See also: print(), sprintf(), sscanf(), fscanf(), and flush().

quoted_printable_decode (PHP3 >= 3.0.6, PHP4)

 Convert a quoted-printable string to an 8 bit string

string quoted_printable_decode (string str)

 This function returns an 8-bit binary string corresponding to the decoded quoted printable string. This function is similar to imap_qprint(), except this one does not require the IMAP module to work.

quotemeta (PHP3 , PHP4)

Quote meta characters

string quotemeta (string str)

 Returns a version of str with a backslash character (\) before every character that is among these:

. \\ + * ? [^] ($)

 See also addslashes(), htmlentities(), htmlspecialchars(), nl2br(), and stripslashes().

rtrim (PHP3 , PHP4)

Remove trailing whitespace.

string rtrim (string str)

 Returns the argument string without trailing whitespace, including newlines. This is an alias for chop().

Example 1. rtrim() example

$trimmed = rtrim ($line);

 See also trim(), ltrim().

sscanf (PHP4 >= 4.0.1)

Parses input from a string according to a format

mixed sscanf (string str, string format [, string var1...])

 The function sscanf() is the input analog of printf(). Sscanf() reads from the string str and interprets it according to the specified format. If only two parameters were passed to this function, the values parsed will be returned as an array.

Example 1. Sscanf() Example

// getting the serial number

$serial = sscanf("SN/2350001","SN/%d");

// and the date of manufacturing

$mandate = "January 01 2000";

list($month, $day, $year) = sscanf($mandate,"%s %d %d");

echo "Item $serial was manufactured on: $year-".substr($month,0,3)."-$day\n";

 If optional parameters are passed, the function will return the number of assigned values. The optional parameters must be passed by reference.

Example 2. Sscanf() - using optional parameters

// get author info and generate DocBook entry

$auth = "24\tLewis Carroll";

$n = sscanf($auth,"%d\t%s %s", &$id, &$first, &$last);

echo "<author id='$id'>

 <firstname>$first</firstname>

 <surname>$last</surname>

</author>\n";

 See also: fscanf(), printf(), and sprintf().

setlocale (PHP3 , PHP4)

Set locale information

string setlocale (string category, string locale)

 Category is a string specifying the category of the functions affected by the locale setting:

•
 LC_ALL for all of the below

•
 LC_COLLATE for string comparison - not currently implemented in PHP

•
 LC_CTYPE for character classification and conversion, for example strtoupper()

•
 LC_MONETARY for localeconv() - not currently implemented in PHP

•
 LC_NUMERIC for decimal separator

•
 LC_TIME for date and time formatting with strftime()

 If locale is the empty string "", the locale names will be set from the values of environment variables with the same names as the above categories, or from "LANG".

 If locale is zero or "0", the locale setting is not affected, only the current setting is returned.

 Setlocale returns the new current locale, or false if the locale functionality is not implemented in the plattform, the specified locale does not exist or the category name is invalid. An invalid category name also causes a warning message.

similar_text (PHP3 >= 3.0.7, PHP4 >= 4.0b2)

 Calculate the similarity between two strings

int similar_text (string first, string second [, double percent])

 This calculates the similarity between two strings as described in Oliver [1993]. Note that this implementation does not use a stack as in Oliver's pseudo code, but recursive calls which may or may not speed up the whole process. Note also that the complexity of this algorithm is O(N**3) where N is the length of the longest string.

 By passing a reference as third argument, similar_text() will calculate the similarity in percent for you. It returns the number of matching chars in both strings.

soundex (PHP3 , PHP4)

Calculate the soundex key of a string

string soundex (string str)

 Calculates the soundex key of str.

 Soundex keys have the property that words pronounced similarly produce the same soundex key, and can thus be used to simplify searches in databases where you know the pronunciation but not the spelling. This soundex function returns a string 4 characters long, starting with a letter.

 This particular soundex function is one described by Donald Knuth in "The Art Of Computer Programming, vol. 3: Sorting And Searching", Addison-Wesley (1973), pp. 391-392.

Example 1. Soundex Examples

soundex ("Euler") == soundex ("Ellery") == 'E460';

soundex ("Gauss") == soundex ("Ghosh") == 'G200';

soundex ("Knuth") == soundex ("Kant") == 'H416';

soundex ("Lloyd") == soundex ("Ladd") == 'L300';

soundex ("Lukasiewicz") == soundex ("Lissajous") == 'L222';

sprintf (PHP3 , PHP4)

Return a formatted string

string sprintf (string format [, mixed args...])

 Returns a string produced according to the formatting string format.

 The format string is composed by zero or more directives: ordinary characters (excluding %) that are copied directly to the result, and conversion specifications, each of which results in fetching its own parameter. This applies to both sprintf() and printf().

 Each conversion specification consists of these elements, in order:

1.
 An optional padding specifier that says what character will be used for padding the results to the right string size. This may be a space character or a 0 (zero character). The default is to pad with spaces. An alternate padding character can be specified by prefixing it with a single quote ('). See the examples below.

2.
 An optional alignment specifier that says if the result should be left-justified or right-justified. The default is right-justified; a - character here will make it left-justified.

3.
 An optional number, a width specifier that says how many characters (minimum) this conversion should result in.

4.
 An optional precision specifier that says how many decimal digits should be displayed for floating-point numbers. This option has no effect for other types than double. (Another function useful for formatting numbers is number_format().)

5.
 A type specifier that says what type the argument data should be treated as. Possible types:

	 % - a literal percent character. No argument is required.

	 b - the argument is treated as an integer, and presented as a binary number.

	 c - the argument is treated as an integer, and presented as the character with that ASCII value.

	 d - the argument is treated as an integer, and presented as a decimal number.

	 f - the argument is treated as a double, and presented as a floating-point number.

	 o - the argument is treated as an integer, and presented as an octal number.

	 s - the argument is treated as and presented as a string.

	 x - the argument is treated as an integer and presented as a hexadecimal number (with lowercase letters).

	 X - the argument is treated as an integer and presented as a hexadecimal number (with uppercase letters).

 See also: printf(), sscanf(), fscanf(), and number_format().

Example 1. Sprintf(): zero-padded integers

$isodate = sprintf ("%04d-%02d-%02d", $year, $month, $day);

Example 2. Sprintf(): formatting currency

$money1 = 68.75;

$money2 = 54.35;

$money = $money1 + $money2;

// echo $money will output "123.1";

$formatted = sprintf ("%01.2f", $money);

// echo $formatted will output "123.10"

strcasecmp (PHP3 >= 3.0.2, PHP4)

 Binary safe case-insensitive string comparison

int strcasecmp (string str1, string str2)

 Returns < 0 if str1 is less than str2; > 0 if str1 is greater than str2, and 0 if they are equal.

Example 1. strcasecmp() example

$var1 = "Hello";

$var2 = "hello";

if (!strcasecmp ($var1, $var2)) {

 echo '$var1 is equal to $var2 in a case-insensitive string comparison';

}

 See also ereg(), strcmp(), substr(), stristr(), and strstr().

strchr (PHP3 , PHP4)

 Find the first occurrence of a character

string strchr (string haystack, string needle)

 This function is an alias for strstr(), and is identical in every way.

strcmp (PHP3 , PHP4)

Binary safe string comparison

int strcmp (string str1, string str2)

 Returns < 0 if str1 is less than str2; > 0 if str1 is greater than str2, and 0 if they are equal.

 Note that this comparison is case sensitive.

 See also ereg(), strcasecmp(), substr(), stristr(), and strstr().

strcspn (PHP3 >= 3.0.3, PHP4)

 Find length of initial segment not matching mask

int strcspn (string str1, string str2)

 Returns the length of the initial segment of str1 which does not contain any of the characters in str2.

 See also strspn().

strip_tags (PHP3 >= 3.0.8, PHP4 >= 4.0b2)

Strip HTML and PHP tags from a string

string strip_tags (string str [, string allowable_tags])

 This function tries to strip all HTML and PHP tags from the given string. It errors on the side of caution in case of incomplete or bogus tags. It uses the same tag stripping state machine as the fgetss() function.

 You can use the optional second parameter to specify tags which should not be stripped.

Note: Allowable_tags was added in PHP 3.0.13, PHP4B3.

stripcslashes (PHP4 >= 4.0b4)

 Un-quote string quoted with addcslashes()

string stripcslashes (string str)

 Returns a string with backslashes stripped off. Recognizes C-like \n, \r ..., octal and hexadecimal representation.

Note: Added in PHP4b3-dev.

 See also addcslashes().

stripslashes (PHP3 , PHP4)

 Un-quote string quoted with addslashes()

string stripslashes (string str)

 Returns a string with backslashes stripped off. (\' becomes ' and so on.) Double backslashes are made into a single backslash.

 See also addslashes().

stristr (PHP3 >= 3.0.6, PHP4)

 Case-insensitive strstr()

string stristr (string haystack, string needle)

 Returns all of haystack from the first occurrence of needle to the end. needle and haystack are examined in a case-insensitive manner.

 If needle is not found, returns false.

 If needle is not a string, it is converted to an integer and applied as the ordinal value of a character.

 See also strchr(), strrchr(), substr(), and ereg().

strlen (PHP3 , PHP4)

Get string length

int strlen (string str)

 Returns the length of string.

str_pad (PHP4 >= 4.0.1)

Pad a string to a certain length with another string

string str_pad (string input, int pad_length [, string pad_string [, int pad_type]])

 This functions pads the input string on the left, the right, or both sides to the specifed padding length. If the optional argument pad_string is not supplied, the input is padded with spaces, otherwise it is padded with characters from pad_string up to the limit.

 Optional argument pad_type can be STR_PAD_RIGHT, STR_PAD_LEFT, or STR_PAD_BOTH. If pad_type is not specified it is assumed to be STR_PAD_RIGHT.

 If the value of pad_length is negative or less than the length of the input string, no padding takes place.

Example 1. str_pad() example

$input = "Alien";

print str_pad($input, 10); // produces "Alien "

print str_pad($input, 10, "-=", STR_PAD_LEFT); // produces "-=-=-Alien"

print str_pad($input, 10, "_", STR_PAD_BOTH); // produces "__Alien___"

strpos (PHP3 , PHP4)

 Find position of first occurrence of a string

int strpos (string haystack, string needle [, int offset])

 Returns the numeric position of the first occurrence of needle in the haystack string. Unlike the strrpos(), this function can take a full string as the needle parameter and the entire string will be used.

 If needle is not found, returns false.

Note: It is easy to mistake the return values for "character found at position 0" and "character not found". Here's how to detect the difference:

// in PHP 4.0b3 and newer:

$pos = strpos ($mystring, "b");

if ($pos === false) { // note: three equal signs

 // not found...

}

// in versions older than 4.0b3:

$pos = strpos ($mystring, "b");

if (is_string ($pos) && !$pos) {

 // not found...

}

 If needle is not a string, it is converted to an integer and applied as the ordinal value of a character.

 The optional offset parameter allows you to specify which character in haystack to start searching. The position returned is still relative to the the beginning of haystack.

 See also strrpos(), strrchr(), substr(), stristr(), and strstr().

strrchr (PHP3 , PHP4)

 Find the last occurrence of a character in a string

string strrchr (string haystack, string needle)

 This function returns the portion of haystack which starts at the last occurrence of needle and goes until the end of haystack.

 Returns false if needle is not found.

 If needle contains more than one character, the first is used.

 If needle is not a string, it is converted to an integer and applied as the ordinal value of a character.

Example 1. Strrchr() example

// get last directory in $PATH

$dir = substr (strrchr ($PATH, ":"), 1);

// get everything after last newline

$text = "Line 1\nLine 2\nLine 3";

$last = substr (strrchr ($text, 10), 1);

 See also substr(), stristr(), and strstr().

str_repeat (PHP4 >= 4.0b4)

Repeat a string

string str_repeat (string input, int multiplier)

 Returns input_str repeated multiplier times. multiplier has to be greater than 0.

Example 1. Str_repeat() example

echo str_repeat ("-=", 10);

 This will output "-=-=-=-=-=-=-=-=-=-=".

Note: This function was added in PHP 4.0.

strrev (PHP3 , PHP4)

Reverse a string

string strrev (string string)

 Returns string, reversed.

strrpos (PHP3 , PHP4)

 Find position of last occurrence of a char in a string

int strrpos (string haystack, char needle)

 Returns the numeric position of the last occurrence of needle in the haystack string. Note that the needle in this case can only be a single character. If a string is passed as the needle, then only the first character of that string will be used.

 If needle is not found, returns false.

 If needle is not a string, it is converted to an integer and applied as the ordinal value of a character.

 See also strpos(), strrchr(), substr(), stristr(), and strstr().

strspn (PHP3 >= 3.0.3, PHP4)

 Find length of initial segment matching mask

int strspn (string str1, string str2)

 Returns the length of the initial segment of str1 which consists entirely of characters in str2.

strspn ("42 is the answer, what is the question ...", "1234567890");

 will return 2 as result.

 See also strcspn().

strstr (PHP3 , PHP4)

Find first occurrence of a string

string strstr (string haystack, string needle)

 Returns all of haystack from the first occurrence of needle to the end.

 If needle is not found, returns false.

 If needle is not a string, it is converted to an integer and applied as the ordinal value of a character.

Note: Note that this function is case-sensitive. For case-insensitive searches, use stristr().

Example 1. Strstr() example

$email = 'sterling@designmultimedia.com';

$domain = strstr ($email, '@');

print $domain; // prints @designmultimedia.com

 See also stristr(), strrchr(), substr(), and ereg().

strtok (PHP3 , PHP4)

Tokenize string

string strtok (string arg1, string arg2)

 strtok() is used to tokenize a string. That is, if you have a string like "This is an example string" you could tokenize this string into its individual words by using the space character as the token.

Example 1. Strtok() example

$string = "This is an example string";

$tok = strtok ($string," ");

while ($tok) {

 echo "Word=$tok
";

 $tok = strtok (" ");

}

 Note that only the first call to strtok uses the string argument. Every subsequent call to strtok only needs the token to use, as it keeps track of where it is in the current string. To start over, or to tokenize a new string you simply call strtok with the string argument again to initialize it. Note that you may put multiple tokens in the token parameter. The string will be tokenized when any one of the characters in the argument are found.

 Also be careful that your tokens may be equal to "0". This evaluates to false in conditional expressions.

 See also split() and explode().

strtolower (PHP3 , PHP4)

Make a string lowercase

string strtolower (string str)

 Returns string with all alphabetic characters converted to lowercase.

 Note that 'alphabetic' is determined by the current locale. This means that in i.e. the default "C" locale, characters such as umlaut-A (Ä) will not be converted.

Example 1. Strtolower() example

$str = "Mary Had A Little Lamb and She LOVED It So";

$str = strtolower($str);

print $str; # Prints mary had a little lamb and she loved it so

 See also strtoupper() and ucfirst().

strtoupper (PHP3 , PHP4)

Make a string uppercase

string strtoupper (string string)

 Returns string with all alphabetic characters converted to uppercase.

 Note that 'alphabetic' is determined by the current locale. For instance, in the default "C" locale characters such as umlaut-a (ä) will not be converted.

Example 1. Strtoupper() example

$str = "Mary Had A Little Lamb and She LOVED It So";

$str = strtoupper ($str);

print $str; # Prints MARY HAD A LITTLE LAMB AND SHE LOVED IT SO

 See also strtolower() and ucfirst().

str_replace (PHP3 >= 3.0.6, PHP4)

 Replace all occurrences of needle in haystack with str

string str_replace (string needle, string str, string haystack)

 This function replaces all occurences of needle in haystack with the given str. If you don't need fancy replacing rules, you should always use this function instead of ereg_replace().

Example 1. Str_replace() example

$bodytag = str_replace ("%body%", "black", "<body text=%body%>");

 This function is binary safe.

Note: Str_replace() was added in PHP 3.0.6, but was buggy up until PHP 3.0.8.

 See also ereg_replace() and strtr().

strtr (PHP3 , PHP4)

Translate certain characters

string strtr (string str, string from, string to)

 This function operates on str, translating all occurrences of each character in from to the corresponding character in to and returning the result.

 If from and to are different lengths, the extra characters in the longer of the two are ignored.

Example 1. Strtr() example

$addr = strtr($addr, "äåö", "aao");

 strtr() can be called with only two arguments. If called with two arguments it behaves in a new way: from then has to be an array that contains string -> string pairs that will be replaced in the source string. strtr() will always look for the longest possible match first and will *NOT* try to replace stuff that it has already worked on.

 Examples:

$trans = array ("hello" => "hi", "hi" => "hello");

echo strtr("hi all, I said hello", $trans) . "\n";

 This will show: "hello all, I said hi",

Note: This feature (two arguments) was added in PHP 4.0.

 See also ereg_replace().

substr (PHP3 , PHP4)

Return part of a string

string substr (string string, int start [, int length])

 Substr returns the portion of string specified by the start and length parameters.

 If start is positive, the returned string will start at the start'th character of string.

 Examples:

$rest = substr ("abcdef", 1); // returns "bcdef"

$rest = substr ("abcdef", 1, 3); // returns "bcd"

 If start is negative, the returned string will start at the start'th character from the end of string.

 Examples:

$rest = substr ("abcdef", -1); // returns "f"

$rest = substr ("abcdef", -2); // returns "ef"

$rest = substr ("abcdef", -3, 1); // returns "d"

 If length is given and is positive, the string returned will end length characters from start. If this would result in a string with negative length (because the start is past the end of the string), then the returned string will contain the single character at start.

 If length is given and is negative, the string returned will end length characters from the end of string. If this would result in a string with negative length, then the returned string will contain the single character at start.

 Examples:

$rest = substr ("abcdef", 1, -1); // returns "bcde"

 See also strrchr() and ereg().

substr_count (PHP4 >= 4.0RC2)

Count the number of substring occurrences

int substr_count (string haystrack, string needle)

 substr_count() returns the number of times the needle substring occurs in the haystack string.

Example 1. substr_count() example

print substr_count("This is a test", "is"); // prints out 2

substr_replace (PHP4 >= 4.0b4)

Replace text within a portion of a string

string substr_replace (string string, string replacement, int start [, int length])

 substr_replace() replaces the part of string delimited by the start and (optionally) length parameters with the string given in replacement. The result is returned.

 If start is positive, the replacing will begin at the start'th offset into string.

 If start is negative, the replacing will begin at the start'th character from the end of string.

 If length is given and is positive, it represents the length of the portion of string which is to be replaced. If it is negative, it represents the number of characters from the end of string at which to stop replacing. If it is not given, then it will default to strlen(string); i.e. end the replacing at the end of string.

Example 1. Substr_replace() example

<?php

$var = 'ABCDEFGH:/MNRPQR/';

echo "Original: $var<hr>\n";

/* These two examples replace all of $var with 'bob'. */

echo substr_replace ($var, 'bob', 0) . "
\n";

echo substr_replace ($var, 'bob', 0, strlen ($var)) . "
\n";

/* Insert 'bob' right at the beginning of $var. */

echo substr_replace ($var, 'bob', 0, 0) . "
\n";

/* These next two replace 'MNRPQR' in $var with 'bob'. */

echo substr_replace ($var, 'bob', 10, -1) . "
\n";

echo substr_replace ($var, 'bob', -7, -1) . "
\n";

/* Delete 'MNRPQR' from $var. */

echo substr_replace ($var, '', 10, -1) . "
\n";

?>

 See also str_replace() and substr().

Note: Substr_replace() was added in PHP 4.0.

trim (PHP3 , PHP4)

 Strip whitespace from the beginning and end of a string

string trim (string str)

 This function strips whitespace from the start and the end of a string and returns the stripped string. The whitespace characters it currently strips are: "\n", "\r", "\t", "\v", "\0", and a plain space.

 See also chop() and ltrim().

ucfirst (PHP3 , PHP4)

Make a string's first character uppercase

string ucfirst (string str)

 Capitalizes the first character of str if that character is alphabetic.

 Note that 'alphabetic' is determined by the current locale. For instance, in the default "C" locale characters such as umlaut-a (ä) will not be converted.

Example 1. Ucfirst() example

$text = 'mary had a little lamb and she loved it so.';

$text = ucfirst ($text); // $text is now Mary had a little lamb

 // and she loved it so.

 See also strtoupper() and strtolower().

ucwords (PHP3 >= 3.0.3, PHP4)

 Uppercase the first character of each word in a string

string ucwords (string str)

 Capitalizes the first character of each word in str if that character is alphabetic.

Example 1. ucwords() example

$text = "mary had a little lamb and she loved it so.";

$text = ucwords($text); // $text is now: Mary Had A Little

 // Lamb And She Loved It So.

 See also strtoupper(), strtolower() and ucfirst().

LXI. Sybase functions

sybase_affected_rows (PHP3 >= 3.0.6, PHP4)

get number of affected rows in last query

int sybase_affected_rows ([int link_identifier])

 Returns: The number of affected rows by the last query.

 sybase_affected_rows() returns the number of rows affected by the last INSERT, UPDATE or DELETE query on the server associated with the specified link identifier. If the link identifier isn't specified, the last opened link is assumed.

 This command is not effective for SELECT statements, only on statements which modify records. To retrieve the number of rows returned from a SELECT, use sybase_num_rows().

Note: This function is only available using the CT library interface to Sybase, and not the DB library.

sybase_close (PHP3 , PHP4)

close Sybase connection

int sybase_close (int link_identifier)

Returns: true on success, false on error

 sybase_close() closes the link to a Sybase database that's associated with the specified link identifier. If the link identifier isn't specified, the last opened link is assumed.

 Note that this isn't usually necessary, as non-persistent open links are automatically closed at the end of the script's execution.

 sybase_close() will not close persistent links generated by sybase_pconnect().

 See also: sybase_connect(), sybase_pconnect().

sybase_connect (PHP3 , PHP4)

open Sybase server connection

int sybase_connect (string servername, string username, string password)

 Returns: A positive Sybase link identifier on success, or false on error.

 sybase_connect() establishes a connection to a Sybase server. The servername argument has to be a valid servername that is defined in the 'interfaces' file.

 In case a second call is made to sybase_connect() with the same arguments, no new link will be established, but instead, the link identifier of the already opened link will be returned.

 The link to the server will be closed as soon as the execution of the script ends, unless it's closed earlier by explicitly calling sybase_close().

See also sybase_pconnect(), sybase_close().

sybase_data_seek (PHP3 , PHP4)

move internal row pointer

int sybase_data_seek (int result_identifier, int row_number)

 Returns: true on success, false on failure

 sybase_data_seek() moves the internal row pointer of the Sybase result associated with the specified result identifier to pointer to the specifyed row number. The next call to sybase_fetch_row() would return that row.

 See also: sybase_data_seek().

sybase_fetch_array (PHP3 , PHP4)

fetch row as array

int sybase_fetch_array (int result)

 Returns: An array that corresponds to the fetched row, or false if there are no more rows.

 sybase_fetch_array() is an extended version of sybase_fetch_row(). In addition to storing the data in the numeric indices of the result array, it also stores the data in associative indices, using the field names as keys.

 An important thing to note is that using sybase_fetch_array() is NOT significantly slower than using sybase_fetch_row(), while it provides a significant added value.

 For further details, also see sybase_fetch_row()

sybase_fetch_field (PHP3 , PHP4)

get field information

object sybase_fetch_field (int result, int field_offset)

 Returns an object containing field information.

 sybase_fetch_field() can be used in order to obtain information about fields in a certain query result. If the field offset isn't specified, the next field that wasn't yet retreived by sybase_fetch_field() is retreived.

 The properties of the object are:

•
 name - column name. if the column is a result of a function, this property is set to computed#N, where #N is a serial number.

•
 column_source - the table from which the column was taken

•
 max_length - maximum length of the column

•
 numeric - 1 if the column is numeric

 See also sybase_field_seek()

sybase_fetch_object (PHP3 , PHP4)

fetch row as object

int sybase_fetch_object (int result)

 Returns: An object with properties that correspond to the fetched row, or false if there are no more rows.

 sybase_fetch_object() is similar to sybase_fetch_array(), with one difference - an object is returned, instead of an array. Indirectly, that means that you can only access the data by the field names, and not by their offsets (numbers are illegal property names).

 Speed-wise, the function is identical to sybase_fetch_array(), and almost as quick as sybase_fetch_row() (the difference is insignificant).

 See also: sybase_fetch-array() and sybase_fetch-row().

sybase_fetch_row (PHP3 , PHP4)

get row as enumerated array

array sybase_fetch_row (int result)

 Returns: An array that corresponds to the fetched row, or false if there are no more rows.

 sybase_fetch_row() fetches one row of data from the result associated with the specified result identifier. The row is returned as an array. Each result column is stored in an array offset, starting at offset 0.

 Subsequent call to sybase_fetch_rows() would return the next row in the result set, or false if there are no more rows.

 See also: sybase_fetch_array(), sybase_fetch_object(), sybase_data_seek(), sybase_fetch_lengths(), and sybase_result().

sybase_field_seek (PHP3 , PHP4)

set field offset

int sybase_field_seek (int result, int field_offset)

 Seeks to the specified field offset. If the next call to sybase_fetch_field() won't include a field offset, this field would be returned.

 See also: sybase_fetch_field().

sybase_free_result (PHP3 , PHP4)

free result memory

int sybase_free_result (int result)

 sybase_free_result() only needs to be called if you are worried about using too much memory while your script is running. All result memory will automatically be freed when the script ends. You may call sybase_free_result() with the result identifier as an argument and the associated result memory will be freed.

sybase_num_fields (PHP3 , PHP4)

get number of fields in result

int sybase_num_fields (int result)

 sybase_num_fields() returns the number of fields in a result set.

 See also: sybase_db_query(), sybase_query(), sybase_fetch_field(), sybase_num_rows().

sybase_num_rows (PHP3 , PHP4)

get number of rows in result

int sybase_num_rows (string result)

 sybase_num_rows() returns the number of rows in a result set.

 See also: sybase_db_query(), sybase_query() and, sybase_fetch_row().

sybase_pconnect (PHP3 , PHP4)

open persistent Sybase connection

int sybase_pconnect (string servername, string username, string password)

 Returns: A positive Sybase persistent link identifier on success, or false on error

 sybase_pconnect() acts very much like sybase_connect() with two major differences.

 First, when connecting, the function would first try to find a (persistent) link that's already open with the same host, username and password. If one is found, an identifier for it will be returned instead of opening a new connection.

 Second, the connection to the SQL server will not be closed when the execution of the script ends. Instead, the link will remain open for future use (sybase_close() will not close links established by sybase_pconnect()).

 This type of links is therefore called 'persistent'.

sybase_query (PHP3 , PHP4)

send Sybase query

int sybase_query (string query, int link_identifier)

 Returns: A positive Sybase result identifier on success, or false on error.

 sybase_query() sends a query to the currently active database on the server that's associated with the specified link identifier. If the link identifier isn't specified, the last opened link is assumed. If no link is open, the function tries to establish a link as if sybase_connect() was called, and use it.

 See also: sybase_db_query(), sybase_select_db(), and sybase_connect().

sybase_result (PHP3 , PHP4)

get result data

int sybase_result (int result, int row, mixed field)

 Returns: The contents of the cell at the row and offset in the specified Sybase result set.

 sybase_result() returns the contents of one cell from a Sybase result set. The field argument can be the field's offset, or the field's name, or the field's table dot field's name (tablename.fieldname). If the column name has been aliased ('select foo as bar from...'), use the alias instead of the column name.

 When working on large result sets, you should consider using one of the functions that fetch an entire row (specified below). As these functions return the contents of multiple cells in one function call, they're MUCH quicker than sybase_result(). Also, note that specifying a numeric offset for the field argument is much quicker than specifying a fieldname or tablename.fieldname argument.

 Recommended high-performance alternatives: sybase_fetch_row(), sybase_fetch_array(), and sybase_fetch_object().

sybase_select_db (PHP3 , PHP4)

select Sybase database

int sybase_select_db (string database_name, int link_identifier)

 Returns: true on success, false on error

 sybase_select_db() sets the current active database on the server that's associated with the specified link identifier. If no link identifier is specified, the last opened link is assumed. If no link is open, the function will try to establish a link as if sybase_connect() was called, and use it.

 Every subsequent call to sybase_query() will be made on the active database.

 See also: sybase_connect(), sybase_pconnect(), and sybase_query()

LXII. URL Functions

base64_decode (PHP3 , PHP4)

Decodes data encoded with MIME base64

string base64_decode (string encoded_data)

 Base64_decode() decodes encoded_data and returns the original data. The returned data may be binary.

 See also: base64_encode(), RFC-2045 section 6.8.

base64_encode (PHP3 , PHP4)

Encodes data with MIME base64

string base64_encode (string data)

 Base64_encode() returns data encoded with base64. This encoding is designed to make binary data survive transport through transport layers that are not 8-bit clean, such as mail bodies.

 Base64-encoded data takes about 33% more space than the original data.

 See also: base64_decode(), chunk_split(), RFC-2045 section 6.8.

parse_url (PHP3 , PHP4)

Parse a URL and return its components

array parse_url (string url)

 This function returns an associative array returning any of the various components of the URL that are present. This includes the "scheme", "host", "port", "user", "pass", "path", "query", and "fragment".

rawurldecode (PHP3 , PHP4)

Decode URL-encoded strings

string rawurldecode (string str)

 Returns a string in which the sequences with percent (%) signs followed by two hex digits have been replaced with literal characters. For example, the string

foo%20bar%40baz

 decodes into

foo

 bar@baz

.

 See also rawurlencode(), urldecode(), urlencode().

rawurlencode (PHP3 , PHP4)

URL-encode according to RFC1738

string rawurlencode (string str)

 Returns a string in which all non-alphanumeric characters except

-_.

 have been replaced with a percent (%) sign followed by two hex digits. This is the encoding described in RFC1738 for protecting literal characters from being interpreted as special URL delimiters, and for protecting URL's from being mangled by transmission media with character conversions (like some email systems). For example, if you want to include a password in an ftp url:

Example 1. Rawurlencode() example 1

echo '<A HREF="ftp://user:', rawurlencode ('foo @+%/'),

 '@ftp.my.com/x.txt">';

 Or, if you pass information in a path info component of the url:

Example 2. Rawurlencode() example 2

echo '<A HREF="http://x.com/department_list_script/',

 rawurlencode ('sales and marketing/Miami'), '">';

 See also rawurldecode(), urldecode(), urlencode().

urldecode (PHP3 , PHP4)

Decodes URL-encoded string

string urldecode (string str)

 Decodes any %## encoding in the given string. The decoded string is returned.

Example 1. Urldecode() example

$a = split ('&', $querystring);

$i = 0;

while ($i < count ($a)) {

 $b = split ('=', $a [$i]);

 echo 'Value for parameter ', htmlspecialchars (urldecode ($b [0])),

 ' is ', htmlspecialchars (urldecode ($b [1])), "
";

 $i++;

}

 See also urlencode(), rawurlencode(), rawurldecode().

urlencode (PHP3 , PHP4)

URL-encodes string

string urlencode (string str)

 Returns a string in which all non-alphanumeric characters except -_. have been replaced with a percent (%) sign followed by two hex digits and spaces encoded as plus (+) signs. It is encoded the same way that the posted data from a WWW form is encoded, that is the same way as in application/x-www-form-urlencoded media type. This differs from the RFC1738 encoding (see rawurlencode()) in that for historical reasons, spaces are encoded as plus (+) signs. This function is convenient when encoding a string to be used in a query part of an URL, as a convenient way to pass variables to the next page:

Example 1. Urlencode() example

echo '';

 See also urldecode(), rawurldecode(), rawurlencode().

LXIII. Variable Functions

call_user_func (PHP3 >= 3.0.3, PHP4)

 Call a user function given by the first parameter

mixed call_user_func (string function_name [, mixed parameter [, mixed ...]])

 Call a user defined function given by the function_name parameter. Take the following:

function barber ($type) {

 print "You wanted a $type haircut, no problem";

}

call_user_func ('barber', "mushroom");

call_user_func ('barber', "shave");

doubleval (PHP3 , PHP4)

Get double value of a variable

double doubleval (mixed var)

 Returns the double (floating point) value of var.

 Var may be any scalar type. You cannot use doubleval() on arrays or objects.

$var = '122.34343The';

$double_value_of_var = doubleval ($var);

print $double_value_of_var; // prints 122.34343

 See also intval(), strval(), settype() and Type juggling.

empty (unknown)

Determine whether a variable is set

int empty (mixed var)

 Returns false if var is set and has a non-empty or non-zero value; true otherwise.

$var = 0;

if (empty($var)) { #evaluates true

 print '$var is either 0 or not at all set';

}

if (!isset($var)) { // evaluates false

 print 'The $var is not set at all';

}

 Note that this is meaningless when used on anything which isn't a variable; i.e. empty (addslashes ($name)) has no meaning since it would be checking whether something which isn't a variable is a variable with a false value.

 See also isset() and unset().

gettype (PHP3 , PHP4)

Get the type of a variable

string gettype (mixed var)

 Returns the type of the PHP variable var.

 Possibles values for the returned string are:

•
"boolean"

•
"integer"

•
"double"

•
"string"

•
"array"

•
"object"

•
"resource"

•
"user function"

•
"unknown type"

 See also settype().

intval (PHP3 , PHP4)

Get integer value of a variable

int intval (mixed var [, int base])

 Returns the integer value of var, using the specified base for the conversion (the default is base 10).

 Var may be any scalar type. You cannot use intval() on arrays or objects.

 See also doubleval(), strval(), settype() and Type juggling.

is_array (PHP3 , PHP4)

Finds whether a variable is an array

int is_array (mixed var)

 Returns true if var is an array, false otherwise.

 See also is_double(), is_float(), is_int(), is_integer(), is_real(), is_string(), is_long(), and is_object().

is_bool (PHP4 >= 4.0b4)

 Finds out whether a variable is a boolean

int is_bool (mixed var)

 Returns true if the var parameter is a boolean.

 See also is_array(), is_double(), is_float(), is_int(), is_integer(), is_real(), is_string(), is_long(), and is_object().

is_double (PHP3 , PHP4)

Finds whether a variable is a double

int is_double (mixed var)

 Returns true if var is a double, false otherwise.

 See also is_array(), is_bool(), is_float(), is_int(), is_integer(), is_real(), is_string(), is_long(), and is_object().

is_float (PHP3 , PHP4)

Finds whether a variable is a float

int is_float (mixed var)

 This function is an alias for is_double().

 See also is_double(), is_bool(), is_real(), is_int(), is_integer(), is_string(), is_object(), is_array(), and is_long().

is_int (PHP3 , PHP4)

Find whether a variable is an integer

int is_int (mixed var)

 This function is an alias for is_long().

 See also is_bool(), is_double(), is_float(), is_integer(), is_string(), is_real(), is_object(), is_array(), and is_long().

is_integer (PHP3 , PHP4)

Find whether a variable is an integer

int is_integer (mixed var)

 This function is an alias for is_long().

 See also is_bool(), is_double(), is_float(), is_int(), is_string(), is_real(), is_object(), is_array(), and is_long().

is_long (PHP3 , PHP4)

Finds whether a variable is an integer

int is_long (mixed var)

 Returns true if var is an integer (long), false otherwise.

 See also is_bool(), is_double(), is_float(), is_int(), is_real(), is_string(), is_object(), is_array(), and is_integer().

is_numeric (PHP4 >= 4.0RC1)

 Finds whether a variable is a number or a numeric string

int is_numeric (mixed var)

 Returns true if var is a number or a numeric string, false otherwise.

 See also is_bool(), is_double(), is_float(), is_int(), is_real(), is_string(), is_object(), is_array(), and is_integer().

is_object (PHP3 , PHP4)

Finds whether a variable is an object

int is_object (mixed var)

 Returns true if var is an object, false otherwise.

 See also is_bool(), is_long(), is_int(), is_integer(), is_float(), is_double(), is_real(), is_string(), and is_array().

is_real (PHP3 , PHP4)

Finds whether a variable is a real

int is_real (mixed var)

 This function is an alias for is_double().

 See also is_bool(), is_long(), is_int(), is_integer(), is_float(), is_double(), is_object(), is_string(), and is_array().

is_resource (PHP4 >= 4.0b4)

 Finds whether a variable is a resource

int is_resource (mixed var)

 is_resource() returns true if the variable given by the var parameter is a resource, otherwise it returns false.

 Resources are things like file or database result handles that are allocated and freed by internal PHP functions and that may need some cleanup when they are no longer in use but haven't been freed by user code.

is_string (PHP3 , PHP4)

Finds whether a variable is a string

int is_string (mixed var)

 Returns true if var is a string, false otherwise.

 See also is_bool(), is_long(), is_int(), is_integer(), is_float(), is_double(), is_real(), is_object(), and is_array().

isset (unknown)

Determine whether a variable is set

int isset (mixed var)

 Returns true if var exists; false otherwise.

 If a variable has been unset with unset(), it will no longer be isset().

$a = "test";

echo isset ($a); // true

unset ($a);

echo isset ($a); // false

 See also empty() and unset().

print_r (PHP4)

 Prints human-readable information about a variable

void print_r (mixed expression)

 This function displays information about the values of variables in a way that's readable by humans. If given a string, integer or double, the value itself will be printed. If given an array, values will be presented in a format that shows keys and elements. Similar notation is used for objects.

 Compare print_r() to var_dump().

<?php

$a = array (1, 2, array ("a", "b", "c"));

print_r ($a);

?>

Warning

 This function will continue forever if given an array or object that contains a direct or indirect reference to itself or that contains an array or object on a deeper level that does so. This is especially true for print_r($GLOBALS), as $GLOBALS is itself a global variable and contains a reference to itself as such.

settype (PHP3 , PHP4)

Set the type of a variable

int settype (string var, string type)

 Set the type of variable var to type.

 Possibles values of type are:

•
"integer"

•
"double"

•
"string"

•
"array"

•
"object"

 Returns true if successful; otherwise returns false.

 See also gettype().

strval (PHP3 , PHP4)

Get string value of a variable

string strval (mixed var)

 Returns the string value of var.

 var may be any scalar type. You cannot use strval() on arrays or objects.

 See also doubleval(), intval(), settype() and Type juggling.

unset (unknown)

Unset a given variable

int unset (mixed var)

 unset() destroys the specified variable and returns true.

Example 1. Unset() example

unset ($foo);

unset ($bar['quux']);

 See also isset() and empty().

var_dump (PHP3 >= 3.0.5, PHP4)

Dumps information about a variable

void var_dump (mixed expression)

 This function returns structured information about an expression that includes its type and value. Arrays are explored recursively with values indented to show structure.

 Compare var_dump() to print_r().

<pre>

<?php

 $a = array (1, 2, array ("a", "b", "c"));

 var_dump ($a);

?>

</pre>

LXIV. Vmailmgr functions

 These functions require qmail (http://www.qmail.org/) and the vmailmgr package (http://www.qcc.sk.ca/~bguenter/distrib/vmailmgr/) by Bruce Guenter.

 For all functions, the following two variables are defined as: string vdomain the domain name of your virtual domain (vdomain.com) string basepwd the password of the 'real' user that holds the virtual users

 Only up to 8 characters are recognized in passwords for virtual users

 Return status for all functions matches response in response.h

	O ok

	1 bad

	2 error

	3 error connecting

 Known problems: vm_deluser() does not delete the user directory as it should. vm_addalias() currently does not work correctly.

<?php

dl("php3_vmailmgr.so"); //load the shared library

$vdomain="vdomain.com";

$basepwd="password";

?>

vm_adduser (PHP3 , PHP4 <= 4.0.0)

Add a new virtual user with a password

int vm_adduser (string vdomain, string basepwd, string newusername, string newuserpassword)

 Add a new virtual user with a password. newusername is the email login name and newuserpassword the password for this user.

vm_addalias (PHP3 , PHP4 <= 4.0.0)

Add an alias to a virtual user

int vm_addalias (string vdomain, string basepwd, string username, string alias)

 Add an alias to a virtual user. username is the email login name and alias is an alias for this vuser.

vm_passwd (PHP3 , PHP4 <= 4.0.0)

Changes a virtual users password

int vm_passwd (string vdomain, string username, string password, string newpassword)

 Changes a virtual users password. username is the email login name, password the old password for the vuser, and newpassword the new password.

vm_delalias (PHP3 , PHP4 <= 4.0.0)

Removes an alias

int vm_delalias (string vdomain, string basepwd, string alias)

 Removes an alias.

vm_deluser (PHP3 , PHP4 <= 4.0.0)

Removes a virtual user

int vm_deluser (string vdomain, string username)

 Removes a virtual user..

LXV. WDDX functions

 These functions are intended for work with WDDX (http://www.wddx.org/).

 Note that all the functions that serialize variables use the first element of an array to determine whether the array is to be serialized into an array or structure. If the first element has string key, then it is serialized into a structure, otherwise, into an array.

Example 1. Serializing a single value

<?php

print wddx_serialize_value("PHP to WDDX packet example", "PHP packet");

?>

 This example will produce:

<wddxPacket version='1.0'><header comment='PHP packet'/><data>

<string>PHP to WDDX packet example</string></data></wddxPacket>

Example 2. Using incremental packets

<?php

$pi = 3.1415926;

$packet_id = wddx_packet_start("PHP");

wddx_add_vars($packet_id, "pi");

/* Suppose $cities came from database */

$cities = array("Austin", "Novato", "Seattle");

wddx_add_vars($packet_id, "cities");

$packet = wddx_packet_end($packet_id);

print $packet;

?>

 This example will produce:

<wddxPacket version='1.0'><header comment='PHP'/><data><struct>

<var name='pi'><number>3.1415926</number></var><var name='cities'>

<array length='3'><string>Austin</string><string>Novato</string>

<string>Seattle</string></array></var></struct></data></wddxPacket>

wddx_serialize_value (PHP3 >= 3.0.7, PHP4 >= 4.0b2)

Serialize a single value into a WDDX packet

string wddx_serialize_value (mixed var [, string comment])

 wddx_serialize_value() is used to create a WDDX packet from a single given value. It takes the value contained in var, and an optional comment string that appears in the packet header, and returns the WDDX packet.

wddx_serialize_vars (PHP3 >= 3.0.7, PHP4 >= 4.0b2)

Serialize variables into a WDDX packet

string wddx_serialize_vars (mixed var_name [, mixed ...])

 wddx_serialize_vars() is used to create a WDDX packet with a structure that contains the serialized representation of the passed variables.

 wddx_serialize_vars() takes a variable number of arguments, each of which can be either a string naming a variable or an array containing strings naming the variables or another array, etc.

Example 1. wddx_serialize_vars example

<?php

$a = 1;

$b = 5.5;

$c = array("blue", "orange", "violet");

$d = "colors";

$clvars = array("c", "d");

print wddx_serialize_vars("a", "b", $clvars);

?>

 The above example will produce:

<wddxPacket version='1.0'><header/><data><struct><var name='a'><number>1</number></var>

<var name='b'><number>5.5</number></var><var name='c'><array length='3'>

<string>blue</string><string>orange</string><string>violet</string></array></var>

<var name='d'><string>colors</string></var></struct></data></wddxPacket>

wddx_packet_start (PHP3 >= 3.0.7, PHP4 >= 4.0b2)

Starts a new WDDX packet with structure inside it

int wddx_packet_start ([string comment])

 Use wddx_packet_start() to start a new WDDX packet for incremental addition of variables. It takes an optional comment string and returns a packet ID for use in later functions. It automatically creates a structure definition inside the packet to contain the variables.

wddx_packet_end (PHP3 >= 3.0.7, PHP4 >= 4.0b2)

Ends a WDDX packet with the specified ID

string wddx_packet_end (int packet_id)

 wddx_packet_end() ends the WDDX packet specified by the packet_id and returns the string with the packet.

wddx_add_vars (PHP3 >= 3.0.7, PHP4 >= 4.0b2)

Ends a WDDX packet with the specified ID

wddx_add_vars (int packet_id, mixed name_var [, mixed ...])

 wddx_add_vars() is used to serialize passed variables and add the result to the packet specified by the packet_id. The variables to be serialized are specified in exactly the same way as wddx_serialize_vars().

wddx_deserialize (PHP3 >= 3.0.7, PHP4 >= 4.0b2)

Deserializes a WDDX packet

mixed wddx_deserialize (string packet)

 wddx_deserialized() takes a packet string and deserializes it. It returns the result which can be string, number, or array. Note that structures are deserialized into associative arrays.

LXVI. XML parser functions

Introduction

About XML

 XML (eXtensible Markup Language) is a data format for structured document interchange on the Web. It is a standard defined by The World Wide Web consortium (W3C). Information about XML and related technologies can be found at http://www.w3.org/XML/.

Installation

 This extension uses expat, which can be found at http://www.jclark.com/xml/. The Makefile that comes with expat does not build a library by default, you can use this make rule for that:

libexpat.a: $(OBJS)

 ar -rc $@ $(OBJS)

 ranlib $@

 A source RPM package of expat can be found at http://www.guardian.no/~ssb/phpxml.html.

 Note that if you are using Apache-1.3.7 or later, you already have the required expat library. Simply configure PHP using --with-xml (without any additional path) and it will automatically use the expat library built into Apache.

 On UNIX, run configure with the --with-xml option. The expat library should be installed somewhere your compiler can find it. If you compile PHP as a module for Apache 1.3.9 or later, PHP will automatically use the bundled expat library from Apache. You may need to set CPPFLAGS and LDFLAGS in your environment before running configure if you have installed expat somewhere exotic.

 Build PHP. Tada! That should be it.

About This Extension

 This PHP extension implements support for James Clark's expat in PHP. This toolkit lets you parse, but not validate, XML documents. It supports three source character encodings also provided by PHP: US-ASCII, ISO-8859-1 and UTF-8. UTF-16 is not supported.

 This extension lets you create XML parsers and then define handlers for different XML events. Each XML parser also has a few parameters you can adjust.

 The XML event handlers defined are:

Table 1. Supported XML handlers

	PHP function to set handler
	Event description

	xml_set_element_handler()
	 Element events are issued whenever the XML parser encounters start or end tags. There are separate handlers for start tags and end tags.

	 xml_set_character_data_handler()
	 Character data is roughly all the non-markup contents of XML documents, including whitespace between tags. Note that the XML parser does not add or remove any whitespace, it is up to the application (you) to decide whether whitespace is significant.

	 xml_set_processing_instruction_handler()
	 PHP programmers should be familiar with processing instructions (PIs) already. <?php ?> is a processing instruction, where php is called the "PI target". The handling of these are application-specific, except that all PI targets starting with "XML" are reserved.

	xml_set_default_handler()
	 What goes not to another handler goes to the default handler. You will get things like the XML and document type declarations in the default handler.

	 xml_set_unparsed_entity_decl_handler()
	 This handler will be called for declaration of an unparsed (NDATA) entity.

	 xml_set_notation_decl_handler()
	 This handler is called for declaration of a notation.

	 xml_set_external_entity_ref_handler()
	 This handler is called when the XML parser finds a reference to an external parsed general entity. This can be a reference to a file or URL, for example. See the external entity example for a demonstration.

Case Folding

 The element handler functions may get their element names case-folded. Case-folding is defined by the XML standard as "a process applied to a sequence of characters, in which those identified as non-uppercase are replaced by their uppercase equivalents". In other words, when it comes to XML, case-folding simply means uppercasing.

 By default, all the element names that are passed to the handler functions are case-folded. This behaviour can be queried and controlled per XML parser with the xml_parser_get_option() and xml_parser_set_option() functions, respectively.

Error Codes

 The following constants are defined for XML error codes (as returned by xml_parse()):

	XML_ERROR_NONE

	XML_ERROR_NO_MEMORY

	XML_ERROR_SYNTAX

	XML_ERROR_NO_ELEMENTS

	XML_ERROR_INVALID_TOKEN

	XML_ERROR_UNCLOSED_TOKEN

	XML_ERROR_PARTIAL_CHAR

	XML_ERROR_TAG_MISMATCH

	XML_ERROR_DUPLICATE_ATTRIBUTE

	XML_ERROR_JUNK_AFTER_DOC_ELEMENT

	XML_ERROR_PARAM_ENTITY_REF

	XML_ERROR_UNDEFINED_ENTITY

	XML_ERROR_RECURSIVE_ENTITY_REF

	XML_ERROR_ASYNC_ENTITY

	XML_ERROR_BAD_CHAR_REF

	XML_ERROR_BINARY_ENTITY_REF

	XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF

	XML_ERROR_MISPLACED_XML_PI

	XML_ERROR_UNKNOWN_ENCODING

	XML_ERROR_INCORRECT_ENCODING

	XML_ERROR_UNCLOSED_CDATA_SECTION

	XML_ERROR_EXTERNAL_ENTITY_HANDLING

Character Encoding

 PHP's XML extension supports the Unicode (http://www.unicode.org/) character set through different character encodings. There are two types of character encodings, source encoding and target encoding. PHP's internal representation of the document is always encoded with UTF-8.

 Source encoding is done when an XML document is parsed. Upon creating an XML parser, a source encoding can be specified (this encoding can not be changed later in the XML parser's lifetime). The supported source encodings are ISO-8859-1, US-ASCII and UTF-8. The former two are single-byte encodings, which means that each character is represented by a single byte. UTF-8 can encode characters composed by a variable number of bits (up to 21) in one to four bytes. The default source encoding used by PHP is ISO-8859-1.

 Target encoding is done when PHP passes data to XML handler functions. When an XML parser is created, the target encoding is set to the same as the source encoding, but this may be changed at any point. The target encoding will affect character data as well as tag names and processing instruction targets.

 If the XML parser encounters characters outside the range that its source encoding is capable of representing, it will return an error.

 If PHP encounters characters in the parsed XML document that can not be represented in the chosen target encoding, the problem characters will be "demoted". Currently, this means that such characters are replaced by a question mark.

Some Examples

 Here are some example PHP scripts parsing XML documents.

XML Element Structure Example

 This first example displays the stucture of the start elements in a document with indentation.

Example 1. Show XML Element Structure

$file = "data.xml";

$depth = array();

function startElement($parser, $name, $attrs) {

 global $depth;

 for ($i = 0; $i < $depth[$parser]; $i++) {

 print " ";

 }

 print "$name\n";

 $depth[$parser]++;

}

function endElement($parser, $name) {

 global $depth;

 $depth[$parser]--;

}

$xml_parser = xml_parser_create();

xml_set_element_handler($xml_parser, "startElement", "endElement");

if (!($fp = fopen($file, "r"))) {

 die("could not open XML input");

}

while ($data = fread($fp, 4096)) {

 if (!xml_parse($xml_parser, $data, feof($fp))) {

 die(sprintf("XML error: %s at line %d",

 xml_error_string(xml_get_error_code($xml_parser)),

 xml_get_current_line_number($xml_parser)));

 }

}

xml_parser_free($xml_parser);

XML Tag Mapping Example

Example 2. Map XML to HTML

 This example maps tags in an XML document directly to HTML tags. Elements not found in the "map array" are ignored. Of course, this example will only work with a specific XML document type.

$file = "data.xml";

$map_array = array(

 "BOLD" => "B",

 "EMPHASIS" => "I",

 "LITERAL" => "TT"

);

function startElement($parser, $name, $attrs) {

 global $map_array;

 if ($htmltag = $map_array[$name]) {

 print "<$htmltag>";

 }

}

function endElement($parser, $name) {

 global $map_array;

 if ($htmltag = $map_array[$name]) {

 print "</$htmltag>";

 }

}

function characterData($parser, $data) {

 print $data;

}

$xml_parser = xml_parser_create();

// use case-folding so we are sure to find the tag in $map_array

xml_parser_set_option($xml_parser, XML_OPTION_CASE_FOLDING, true);

xml_set_element_handler($xml_parser, "startElement", "endElement");

xml_set_character_data_handler($xml_parser, "characterData");

if (!($fp = fopen($file, "r"))) {

 die("could not open XML input");

}

while ($data = fread($fp, 4096)) {

 if (!xml_parse($xml_parser, $data, feof($fp))) {

 die(sprintf("XML error: %s at line %d",

 xml_error_string(xml_get_error_code($xml_parser)),

 xml_get_current_line_number($xml_parser)));

 }

}

xml_parser_free($xml_parser);

XML External Entity Example

 This example highlights XML code. It illustrates how to use an external entity reference handler to include and parse other documents, as well as how PIs can be processed, and a way of determining "trust" for PIs containing code.

 XML documents that can be used for this example are found below the example (xmltest.xml and xmltest2.xml.)

Example 3. External Entity Example

$file = "xmltest.xml";

function trustedFile($file) {

 // only trust local files owned by ourselves

 if (!eregi("^([a-z]+)://", $file)

 && fileowner($file) == getmyuid()) {

 return true;

 }

 return false;

}

function startElement($parser, $name, $attribs) {

 print "<$name";

 if (sizeof($attribs)) {

 while (list($k, $v) = each($attribs)) {

 print " $k=\"<font

 color=\"#990000\">$v\"";

 }

 }

 print ">";

}

function endElement($parser, $name) {

 print "</$name>";

}

function characterData($parser, $data) {

 print "$data";

}

function PIHandler($parser, $target, $data) {

 switch (strtolower($target)) {

 case "php":

 global $parser_file;

 // If the parsed document is "trusted", we say it is safe

 // to execute PHP code inside it. If not, display the code

 // instead.

 if (trustedFile($parser_file[$parser])) {

 eval($data);

 } else {

 printf("Untrusted PHP code: <i>%s</i>",

 htmlspecialchars($data));

 }

 break;

 }

}

function defaultHandler($parser, $data) {

 if (substr($data, 0, 1) == "&" && substr($data, -1, 1) == ";") {

 printf('%s',

 htmlspecialchars($data));

 } else {

 printf('%s',

 htmlspecialchars($data));

 }

}

function externalEntityRefHandler($parser, $openEntityNames, $base, $systemId,

 $publicId) {

 if ($systemId) {

 if (!list($parser, $fp) = new_xml_parser($systemId)) {

 printf("Could not open entity %s at %s\n", $openEntityNames,

 $systemId);

 return false;

 }

 while ($data = fread($fp, 4096)) {

 if (!xml_parse($parser, $data, feof($fp))) {

 printf("XML error: %s at line %d while parsing entity %s\n",

 xml_error_string(xml_get_error_code($parser)),

 xml_get_current_line_number($parser), $openEntityNames);

 xml_parser_free($parser);

 return false;

 }

 }

 xml_parser_free($parser);

 return true;

 }

 return false;

}

function new_xml_parser($file) {

 global $parser_file;

 $xml_parser = xml_parser_create();

 xml_parser_set_option($xml_parser, XML_OPTION_CASE_FOLDING, 1);

 xml_set_element_handler($xml_parser, "startElement", "endElement");

 xml_set_character_data_handler($xml_parser, "characterData");

 xml_set_processing_instruction_handler($xml_parser, "PIHandler");

 xml_set_default_handler($xml_parser, "defaultHandler");

 xml_set_external_entity_ref_handler($xml_parser, "externalEntityRefHandler");

 if (!($fp = @fopen($file, "r"))) {

 return false;

 }

 if (!is_array($parser_file)) {

 settype($parser_file, "array");

 }

 $parser_file[$xml_parser] = $file;

 return array($xml_parser, $fp);

}

if (!(list($xml_parser, $fp) = new_xml_parser($file))) {

 die("could not open XML input");

}

print "<pre>";

while ($data = fread($fp, 4096)) {

 if (!xml_parse($xml_parser, $data, feof($fp))) {

 die(sprintf("XML error: %s at line %d\n",

 xml_error_string(xml_get_error_code($xml_parser)),

 xml_get_current_line_number($xml_parser)));

 }

}

print "</pre>";

print "parse complete\n";

xml_parser_free($xml_parser);

?>

Example 4. xmltest.xml

<?xml version='1.0'?>

<!DOCTYPE chapter SYSTEM "/just/a/test.dtd" [

<!ENTITY plainEntity "FOO entity">

<!ENTITY systemEntity SYSTEM "xmltest2.xml">

]>

<chapter>

 <TITLE>Title &plainEntity;</TITLE>

 <para>

 <informaltable>

 <tgroup cols="3">

 <tbody>

 <row><entry>a1</entry><entry morerows="1">b1</entry><entry>c1</entry></row>

 <row><entry>a2</entry><entry>c2</entry></row>

 <row><entry>a3</entry><entry>b3</entry><entry>c3</entry></row>

 </tbody>

 </tgroup>

 </informaltable>

 </para>

 &systemEntity;

 <sect1 id="about">

 <title>About this Document</title>

 <para>

 <!-- this is a comment -->

 <?php print 'Hi! This is PHP version '.phpversion(); ?>

 </para>

 </sect1>

</chapter>

 This file is included from xmltest.xml:

Example 5. xmltest2.xml

<?xml version="1.0"?>

<!DOCTYPE foo [

<!ENTITY testEnt "test entity">

]>

<foo>

 <element attrib="value"/>

 &testEnt;

 <?php print "This is some more PHP code being executed."; ?>

</foo>

xml_parser_create (PHP3 >= 3.0.6, PHP4)

create an XML parser

int xml_parser_create ([string encoding])

encoding (optional)

 Which character encoding the parser should use. The following character encodings are supported:

	ISO-8859-1 (default)

	US-ASCII

	UTF-8

 This function creates an XML parser and returns a handle for use by other XML functions. Returns false on failure.

xml_set_object (PHP4 >= 4.0b4)

Use XML Parser within an object

void xml_set_object (int parser, object &object)

 This function allows to use parser inside object. All callback functions could be set with xml_set_element_handler() etc and assumed to be methods of object.

<?php

class xml {

var $parser;

function xml() {

 $this->parser = xml_parser_create();

 xml_set_object($this->parser,&$this);

 xml_set_element_handler($this->parser,"tag_open","tag_close");

 xml_set_character_data_handler($this->parser,"cdata");

}

function parse($data) {

 xml_parse($this->parser,$data);

}

function tag_open($parser,$tag,$attributes) {

 var_dump($parser,$tag,$attributes);

}

function cdata($parser,$cdata) {

 var_dump($parser,$cdata);

}

function tag_close($parser,$tag) {

 var_dump($parser,$tag);

}

} // end of class xml

$xml_parser = new xml();

$xml_parser->parse("PHP");

?>

xml_set_element_handler (PHP3 >= 3.0.6, PHP4)

set up start and end element handlers

int xml_set_element_handler (int parser, string startElementHandler, string endElementHandler)

 Sets the element handler functions for the XML parser parser. startElementHandler and endElementHandler are strings containing the names of functions that must exist when xml_parse() is called for parser.

 The function named by startElementHandler must accept three parameters:

startElementHandler (int parser, string name, array attribs)

parser

 The first parameter, parser, is a reference to the XML parser calling the handler.

name

 The second parameter, name, contains the name of the element for which this handler is called. If case-folding is in effect for this parser, the element name will be in uppercase letters.

attribs

 The third parameter, attribs, contains an associative array with the element's attributes (if any). The keys of this array are the attribute names, the values are the attribute values. Attribute names are case-folded on the same criteria as element names. Attribute values are not case-folded.

 The original order of the attributes can be retrieved by walking through attribs the normal way, using each(). The first key in the array was the first attribute, and so on.

 The function named by endElementHandler must accept two parameters:

endElementHandler (int parser, string name)

parser

 The first parameter, parser, is a reference to the XML parser calling the handler.

name

 The second parameter, name, contains the name of the element for which this handler is called. If case-folding is in effect for this parser, the element name will be in uppercase letters.

 If a handler function is set to an empty string, or false, the handler in question is disabled.

 True is returned if the handlers are set up, false if parser is not a parser.

 There is currently no support for object/method handlers. See xml_set_object() for using the XML parser within an object.

xml_set_character_data_handler (PHP3 >= 3.0.6, PHP4)

set up character data handler

int xml_set_character_data_handler (int parser, string handler)

 Sets the character data handler function for the XML parser parser. handler is a string containing the name of a function that must exist when xml_parse() is called for parser.

 The function named by handler must accept two parameters:

handler (int parser, string data)

parser

 The first parameter, parser, is a reference to the XML parser calling the handler.

data

 The second parameter, data, contains the character data as a string.

 If a handler function is set to an empty string, or false, the handler in question is disabled.

 True is returned if the handler is set up, false if parser is not a parser.

 There is currently no support for object/method handlers. See xml_set_object() for using the XML parser within an object.

xml_set_processing_instruction_handler (PHP3 >= 3.0.6, PHP4)

 Set up processing instruction (PI) handler

int xml_set_processing_instruction_handler (int parser, string handler)

 Sets the processing instruction (PI) handler function for the XML parser parser. handler is a string containing the name of a function that must exist when xml_parse() is called for parser.

 A processing instruction has the following format:

<?

 target

 data?>

 You can put PHP code into such a tag, but be aware of one limitation: in an XML PI, the PI end tag (?>) can not be quoted, so this character sequence should not appear in the PHP code you embed with PIs in XML documents. If it does, the rest of the PHP code, as well as the "real" PI end tag, will be treated as character data.

 The function named by handler must accept three parameters:

handler (int parser, string target, string data)

parser

 The first parameter, parser, is a reference to the XML parser calling the handler.

target

 The second parameter, target, contains the PI target.

data

 The third parameter, data, contains the PI data.

 If a handler function is set to an empty string, or false, the handler in question is disabled.

 True is returned if the handler is set up, false if parser is not a parser.

 There is currently no support for object/method handlers. See xml_set_object() for using the XML parser within an object.

xml_set_default_handler (PHP3 >= 3.0.6, PHP4)

set up default handler

int xml_set_default_handler (int parser, string handler)

 Sets the default handler function for the XML parser parser. handler is a string containing the name of a function that must exist when xml_parse() is called for parser.

 The function named by handler must accept two parameters:

handler (int parser, string data)

 parser

 The first parameter, parser, is a reference to the XML parser calling the handler.

 data

 The second parameter, data, contains the character data. This may be the XML declaration, document type declaration, entities or other data for which no other handler exists.

 If a handler function is set to an empty string, or false, the handler in question is disabled.

 True is returned if the handler is set up, false if parser is not a parser.

 There is currently no support for object/method handlers. See xml_set_object() for using the XML parser within an object.

xml_set_unparsed_entity_decl_handler (PHP3 >= 3.0.6, PHP4)

 Set up unparsed entity declaration handler

int xml_set_unparsed_entity_decl_handler (int parser, string handler)

 Sets the unparsed entity declaration handler function for the XML parser parser. handler is a string containing the name of a function that must exist when xml_parse() is called for parser.

 This handler will be called if the XML parser encounters an external entity declaration with an NDATA declaration, like the following:

<!ENTITY name {publicId | systemId}

 NDATA notationName>

 See section 4.2.2 of the XML 1.0 spec (http://www.w3.org/TR/1998/REC-xml-19980210#sec-external-ent) for the definition of notation declared external entities.

 The function named by handler must accept six parameters:

handler (int parser, string entityName, string base, string systemId, string publicId, string notationName)

parser

 The first parameter, parser, is a reference to the XML parser calling the handler.

entityName

 The name of the entity that is about to be defined.

base

 This is the base for resolving the system identifier (systemId) of the external entity. Currently this parameter will always be set to an empty string.

systemId

 System identifier for the external entity.

publicId

 Public identifier for the external entity.

notationName

 Name of the notation of this entity (see xml_set_notation_decl_handler()).

 If a handler function is set to an empty string, or false, the handler in question is disabled.

 True is returned if the handler is set up, false if parser is not a parser.

 There is currently no support for object/method handlers. See xml_set_object() for using the XML parser within an object.

xml_set_notation_decl_handler (PHP3 >= 3.0.6, PHP4)

set up notation declaration handler

int xml_set_notation_decl_handler (int parser, string handler)

 Sets the notation declaration handler function for the XML parser parser. handler is a string containing the name of a function that must exist when xml_parse() is called for parser.

 A notation declaration is part of the document's DTD and has the following format:

<!NOTATION

 name {systemId |

 publicId}>

 See section 4.7 of the XML 1.0 spec (http://www.w3.org/TR/1998/REC-xml-19980210#Notations) for the definition of notation declarations.

 The function named by handler must accept five parameters:

handler (int parser, string notationName, string base, string systemId, string publicId)

 parser

 The first parameter, parser, is a reference to the XML parser calling the handler.

notationName

 This is the notation's name, as per the notation format described above.

 base

 This is the base for resolving the system identifier (systemId) of the notation declaration. Currently this parameter will always be set to an empty string.

systemId

 System identifier of the external notation declaration.

 publicId

 Public identifier of the external notation declaration.

 If a handler function is set to an empty string, or false, the handler in question is disabled.

 True is returned if the handler is set up, false if parser is not a parser.

 There is currently no support for object/method handlers. See xml_set_object() for using the XML parser within an object.

xml_set_external_entity_ref_handler (PHP3 >= 3.0.6, PHP4)

set up external entity reference handler

int xml_set_external_entity_ref_handler (int parser, string handler)

 Sets the notation declaration handler function for the XML parser parser. handler is a string containing the name of a function that must exist when xml_parse() is called for parser.

 The function named by handler must accept five parameters, and should return an integer value. If the value returned from the handler is false (which it will be if no value is returned), the XML parser will stop parsing and xml_get_error_code() will return XML_ERROR_EXTERNAL_ENTITY_HANDLING.

int handler (int parser, string openEntityNames, string base, string systemId, string publicId)

parser

 The first parameter, parser, is a reference to the XML parser calling the handler.

openEntityNames

 The second parameter, openEntityNames, is a space-separated list of the names of the entities that are open for the parse of this entity (including the name of the referenced entity).

base

 This is the base for resolving the system identifier (systemid) of the external entity. Currently this parameter will always be set to an empty string.

systemId

 The fourth parameter, systemId, is the system identifier as specified in the entity declaration.

publicId

 The fifth parameter, publicId, is the public identifier as specified in the entity declaration, or an empty string if none was specified; the whitespace in the public identifier will have been normalized as required by the XML spec.

 If a handler function is set to an empty string, or false, the handler in question is disabled.

 True is returned if the handler is set up, false if parser is not a parser.

 There is currently no support for object/method handlers. See xml_set_object() for using the XML parser within an object.

xml_parse (PHP3 >= 3.0.6, PHP4)

start parsing an XML document

int xml_parse (int parser, string data [, int isFinal])

parser

 A reference to the XML parser to use.

data

 Chunk of data to parse. A document may be parsed piece-wise by calling xml_parse() several times with new data, as long as the isFinal parameter is set and true when the last data is parsed.

isFinal (optional)

 If set and true, data is the last piece of data sent in this parse.

 When the XML document is parsed, the handlers for the configured events are called as many times as necessary, after which this function returns true or false.

 True is returned if the parse was successful, false if it was not successful, or if parser does not refer to a valid parser. For unsuccessful parses, error information can be retrieved with xml_get_error_code(), xml_error_string(), xml_get_current_line_number(), xml_get_current_column_number() and xml_get_current_byte_index().

xml_get_error_code (PHP3 >= 3.0.6, PHP4)

get XML parser error code

int xml_get_error_code (int parser)

parser

 A reference to the XML parser to get error code from.

 This function returns false if parser does not refer to a valid parser, or else it returns one of the error codes listed in the error codes section.

xml_error_string (PHP3 >= 3.0.6, PHP4)

get XML parser error string

string xml_error_string (int code)

code

 An error code from xml_get_error_code().

 Returns a string with a textual description of the error code code, or false if no description was found.

xml_get_current_line_number (PHP3 >= 3.0.6, PHP4)

get current line number for an XML parser

int xml_get_current_line_number (int parser)

parser

 A reference to the XML parser to get line number from.

 This function returns false if parser does not refer to a valid parser, or else it returns which line the parser is currently at in its data buffer.

xml_get_current_column_number (PHP3 >= 3.0.6, PHP4)

 Get current column number for an XML parser

int xml_get_current_column_number (int parser)

parser

 A reference to the XML parser to get column number from.

 This function returns false if parser does not refer to a valid parser, or else it returns which column on the current line (as given by xml_get_current_line_number()) the parser is currently at.

xml_get_current_byte_index (PHP3 >= 3.0.6, PHP4)

get current byte index for an XML parser

int xml_get_current_byte_index (int parser)

parser

 A reference to the XML parser to get byte index from.

 This function returns false if parser does not refer to a valid parser, or else it returns which byte index the parser is currently at in its data buffer (starting at 0).

xml_parser_free (PHP3 >= 3.0.6, PHP4)

Free an XML parser

string xml_parser_free (int parser)

parser

 A reference to the XML parser to free.

 This function returns false if parser does not refer to a valid parser, or else it frees the parser and returns true.

xml_parser_set_option (PHP3 >= 3.0.6, PHP4)

set options in an XML parser

int xml_parser_set_option (int parser, int option, mixed value)

parser

 A reference to the XML parser to set an option in.

option

 Which option to set. See below.

value

 The option's new value.

 This function returns false if parser does not refer to a valid parser, or if the option could not be set. Else the option is set and true is returned.

 The following options are available:

Table 1. XML parser options

	Option constant
	Data type
	Description

	XML_OPTION_CASE_FOLDING
	integer
	 Controls whether case-folding is enabled for this XML parser. Enabled by default.

	XML_OPTION_TARGET_ENCODING
	string
	 Sets which target encoding to use in this XML parser. By default, it is set to the same as the source encoding used by xml_parser_create(). Supported target encodings are ISO-8859-1, US-ASCII and UTF-8.

xml_parser_get_option (PHP3 >= 3.0.6, PHP4)

get options from an XML parser

mixed xml_parser_get_option (int parser, int option)

parser

 A reference to the XML parser to get an option from.

option

 Which option to fetch. See xml_parser_set_option() for a list of options.

 This function returns false if parser does not refer to a valid parser, or if the option could not be set. Else the option's value is returned.

 See xml_parser_set_option() for the list of options.

utf8_decode (PHP3 >= 3.0.6, PHP4)

 Converts a string with ISO-8859-1 characters encoded with UTF-8 to single-byte ISO-8859-1.

string utf8_decode (string data)

 This function decodes data, assumed to be UTF-8 encoded, to ISO-8859-1.

 See utf8_encode() for an explaination of UTF-8 encoding.

utf8_encode (PHP3 >= 3.0.6, PHP4)

encodes an ISO-8859-1 string to UTF-8

string utf8_encode (string data)

 This function encodes the string data to UTF-8, and returns the encoded version. UTF-8 is a standard mechanism used by Unicodefor encoding wide character values into a byte stream. UTF-8 is transparent to plain ASCII characters, is self-synchronized (meaning it is possible for a program to figure out where in the bytestream characters start) and can be used with normal string comparison functions for sorting and such. PHP encodes UTF-8 characters in up to four bytes, like this:

Table 1. UTF-8 encoding

	bytes
	bits
	representation

	1
	7
	0bbbbbbb

	2
	11
	110bbbbb 10bbbbbb

	3
	16
	1110bbbb 10bbbbbb 10bbbbbb

	4
	21
	11110bbb 10bbbbbb 10bbbbbb 10bbbbbb

 Each b represents a bit that can be used to store character data.

LXVII. YAZ

 The yaz() functions wrap the YAZ API. The home page of the project is http://www.indexdata.dk/yaz/. Information about the phpyaz module can be found at http://www.indexdata.dk/phpyaz/.

 PHP/YAZ is much simpler to use than the C API for YAZ but less flexible. The intent is to make it easy to build basic client functions. It supports persistent stateless connections very similar to those offered by the various SQL APIs that are available for PHP. This means that sessions are stateless but shared amongst users, thus saving the connect and INIT steps in many cases.

 Before compiling PHP with the PHP/YAZ module you'll need the YAZ toolkit. Build YAZ and install it. Build PHP with your favourite modules and add option --with-yaz. Your task is roughly the following:

gunzip -c yaz-1.6.tar.gz|tar xf -

gunzip -c php-4.0.X.tar.gz|tar xf -

cd yaz-1.6

./configure --prefix=/usr

make

make install

cd ../php-4.0.X

./configure --with-yaz=/usr/bin

make

make install

 PHP/YAZ keeps track of connections with targets (Z-Associations). A positive integer represents the ID of a particular association.

 The script below demonstrates the parallel searching feature of the API. When invoked it either prints a query form (if no arguments are supplied) or if there are arguments (term and one or more hosts) it searches the targets in array host.

Example 1. YAZ()

$num_hosts = count ($host);

if (empty($term) || count($host) == 0) {

 echo '<form method="get">

 <input type="checkbox"

 name="host[]" value="bagel.indexdata.dk/gils">

 GILS test

 <input type="checkbox"

 name="host[]" value="localhost:9999/Default">

 local test

 <input type="checkbox" checked="1"

 name="host[]" value="z3950.bell-labs.com/books">

 BELL Labs Library

 RPN Query:

 <input type="text" size="30" name="term">

 <input type="submit" name="action" value="Search">

 ';

} else {

 echo 'You searced for ' . htmlspecialchars($term) . '
';

 for ($i = 0; $i > $num_hosts; $i++) {

 $id[] = yaz_connect($host[$i]);

 yaz_syntax($id[$i],"sutrs");

 yaz_search($id[$i],"rpn",$term);

 }

 yaz_wait();

 for ($i = 0; $i < $num_hosts; $i++) {

 echo '<hr>' . $host[$i] . ":";

 $error = yaz_error($id[$i]);

 if (!empty($error)) {

 echo "Error: $error";

 } else {

 $hits = yaz_hits($id[$i]);

 echo "Result Count $hits";

 }

 echo '<dl>';

 for ($p = 1; $p <= 10; $p++) {

 $rec = yaz_record($id[$i],$p,"string");

 if (empty($rec)) continue;

 echo "<dt>$p</dt><dd>";

 echo ereg_replace("\n", "
\n",$rec);

 echo "</dd>";

 }

 echo '</dl>';

 }

}

yaz_addinfo (PHP4 >= 4.0.1)

Returns additional error information

int yaz_addinfo (int id)

 Returns additional error message for target (last request). An empty string is returned if last operation was a success or if no additional information was provided by the target.

yaz_close (PHP4 >= 4.0.1)

Closes a YAZ connection

int yaz_close (int id)

 Closes a connection to a target. The application can no longer refer to the target with the given id.

yaz_connect (PHP4 >= 4.0.1)

 Returns a positive association ID on success; zero on failure

int yaz_connect (string zurl)

 Yaz_connect() prepares for a connection to a Z39.50 target. The zurl argument takes the form host[:port][/database]. If port is omitted 210 is used. If database is omitted Default is used. This function is non-blocking and doesn't attempt to establish a socket - it merely prepares a connect to be performed later when yaz_wait() is called.

yaz_errno (PHP4 >= 4.0.1)

Returns error number

int yaz_errno (int id)

 Returns error for target (last request). A positive value is returned if the target returned a diagnostic code; a value of zero is returned if no errors occurred (success); negative value is returned for other errors targets didn't indicate the error in question.

 Yaz_errno() should be called after network activity for each target - (after yaz_wait() returns) to determine the success or failure of the last operation (e.g. search).

yaz_error (PHP4 >= 4.0.1)

Returns error description

int yaz_error (int id)

 Returns error message for target (last request). An empty string is returned if last operation was a success.

 Yaz_error() returns a english message corresponding to the last error number as returned by yaz_errno().

yaz_hits (PHP4 >= 4.0.1)

Returns number of hits for last search

int yaz_hits (int id)

 Yaz_hits() returns number of hits for last search.

yaz_range (PHP4 >= 4.0.1)

 Specifies the maximum number of records to retrieve

int yaz_range (int id, int start, int number)

 This function is used in conjunction with yaz_search() to specify the maximum number of records to retrieve (number) and the first record position (start). If this function is not invoked (only yaz_search()) start is set to 1 and number is set to 10.

 Returns true on success; false on error.

yaz_record (PHP4 >= 4.0.1)

Returns a record

int yaz_record (int id, int pos, string type)

 Returns record at position or empty string if no record exists at given position.

 The yaz_record() function inspects a record in the current result set at the position specified. If no database record exists at the given position an empty string is returned. The argument, type, specifies the form of the returned record. If type is "string" the record is returned in a string representation suitable for printing (for XML and SUTRS). If type is "array" the record is returned as an array representation (for structured records).

yaz_search (PHP4 >= 4.0.1)

Prepares for a search

int yaz_search (int id, string type, string query)

 Yaz_search() prepares for a search on the target with given id. The type represents the query type - only "rpn" is supported now in which case the third argument is a prefix notation query as used by YAZ. Like yaz_connect() this function is non-blocking and only prepares for a search to be executed later when yaz_wait() is called.

yaz_syntax (PHP4 >= 4.0.1)

 Specifies the preferred record syntax for retrieval

int yaz_syntax (int id, string syntax)

 This function is used in conjunction with yaz_search() to specify the preferred record syntax for retrieval.

yaz_wait (PHP4 >= 4.0.1)

Executes queries

int yaz_wait (int id, string syntax)

 This function carries out networked (blocked) activity for outstanding requests which have been prepared by the functions yaz_connect(), yaz_search(). yaz_wait() returns when all targets have either completed all requests or otherwise completed (in case of errors).

LXVIII. YP/NIS Functions

 NIS (formerly called Yellow Pages) allows network management of important administrative files (e.g. the password file). For more information refer to the NIS manpage and Introduction to YP/NIS (http://www.desy.de/~sieversm/ypdoku/ypdoku/ypdoku.html). There is also a book called Managing NFS and NIS (http://www.oreilly.com/catalog/nfs/noframes.html) by Hal Stern.

 To get these functions to work, you have to configure PHP with --with-yp.

yp_get_default_domain (PHP3 >= 3.0.7, PHP4)

Fetches the machine's default NIS domain

int yp_get_default_domain (void)

 Yp_get_default_domain() returns the default domain of the node or FALSE. Can be used as the domain parameter for successive NIS calls.

 A NIS domain can be described a group of NIS maps. Every host that needs to look up information binds itself to a certain domain. Refer to the documents mentioned at the beginning for more detailed information.

Example 1. Example for the default domain

<?php

$domain = yp_get_default_domain();

echo "Default NIS domain is: " . $domain;

?>

yp_order (PHP3 >= 3.0.7, PHP4)

Returns the order number for a map

int yp_order (string domain, string map)

 Yp_order() returns the order number for a map or FALSE.

Example 1. Example for the NIS order

<?php

 $number = yp_order($domain,$mapname);

 echo "Order number for this map is: " . $order;

?>

 See also yp-get-default-domain().

yp_master (PHP3 >= 3.0.7, PHP4)

 Returns the machine name of the master NIS server for a map

string yp_master (string domain, string map)

 Yp_master() returns the machine name of the master NIS server for a map.

Example 1. Example for the NIS master

<?php

$number = yp_master ($domain, $mapname);

echo "Master for this map is: " . $master;

?>

 See also yp-get-default-domain().

yp_match (PHP3 >= 3.0.7, PHP4)

Returns the matched line

string yp_match (string domain, string map, string key)

 Yp_match() returns the value associated with the passed key out of the specified map or FALSE. This key must be exact.

Example 1. Example for NIS match

<?php

$entry = yp_match ($domain, "passwd.byname", "joe");

echo "Matched entry is: " . $entry;

?>

 In this case this could be: joe:##joe:11111:100:Joe User:/home/j/joe:/usr/local/bin/bash

 See also yp-get-default-domain()

yp_first (PHP3 >= 3.0.7, PHP4)

 Returns the first key-value pair from the named map

array yp_first (string domain, string map)

 Yp_first() returns the first key-value pair from the named map in the named domain, otherwise FALSE.

Example 1. Example for the NIS first

<?php

 $entry = yp_first($domain, "passwd.byname");

 $key = key($entry);

 echo "First entry in this map has key " . $key

 . " and value " . $entry[$key];

?>

 See also yp-get-default-domain()

yp_next (PHP3 >= 3.0.7, PHP4)

Returns the next key-value pair in the named map.

array yp_next (string domain, string map, string key)

 Yp_next() returns the next key-value pair in the named map after the specified key or FALSE.

Example 1. Example for NIS next

<?php

$entry = yp_next ($domain, "passwd.byname", "joe");

if (!$entry) {

 echo yp_errno() . ": " . yp_err_string();

}

$key = key ($entry);

echo "The next entry after joe has key " . $key

 . " and value " . $entry[$key];

?>

 See also yp-get-default-domain().

LXIX. Zlib Compression Functions

 This module uses the functions of zlib (http://www.cdrom.com/pub/infozip/zlib/) by Jean-loup Gailly and Mark Adler to transparently read and write gzip (.gz) compressed files. You have to use a zlib version >= 1.0.9 with this module.

 This module contains versions of most of the filesystem functions which work with gzip-compressed files (and uncompressed files, too, but not with sockets).

Small code example

 Opens a temporary file and writes a test string to it, then it prints out the content of this file twice.

Example 1. Small Zlib Example

<?php

$filename = tempnam ('/tmp', 'zlibtest').'.gz';

print "<html>\n<head></head>\n<body>\n<pre>\n";

$s = "Only a test, test, test, test, test, test, test, test!\n";

// open file for writing with maximum compression

$zp = gzopen($filename, "w9");

// write string to file

gzwrite($zp, $s);

// close file

gzclose($zp);

// open file for reading

$zp = gzopen($filename, "r");

// read 3 char

print gzread($zp, 3);

// output until end of the file and close it.

gzpassthru($zp);

print "\n";

// open file and print content (the 2nd time).

if (readgzfile($filename) != strlen($s)) {

 echo "Error with zlib functions!";

}

unlink($filename);

print "</pre>\n</h1></body>\n</html>\n";

?>

gzclose (PHP3 , PHP4)

Close an open gz-file pointer

int gzclose (int zp)

 The gz-file pointed to by zp is closed.

 Returns true on success and false on failure.

 The gz-file pointer must be valid, and must point to a file successfully opened by gzopen().

gzeof (PHP3 , PHP4)

Test for end-of-file on a gz-file pointer

int gzeof (int zp)

 Returns true if the gz-file pointer is at EOF or an error occurs; otherwise returns false.

 The gz-file pointer must be valid, and must point to a file successfully opened by gzopen().

gzfile (PHP3 , PHP4)

Read entire gz-file into an array

array gzfile (string filename [, int use_include_path])

 Identical to readgzfile(), except that gzfile() returns the file in an array.

 You can use the optional second parameter and set it to "1", if you want to search for the file in the include_path, too.

 See also readgzfile(), and gzopen().

gzgetc (PHP3 , PHP4)

Get character from gz-file pointer

string gzgetc (int zp)

 Returns a string containing a single (uncompressed) character read from the file pointed to by zp. Returns FALSE on EOF (as does gzeof()).

 The gz-file pointer must be valid, and must point to a file successfully opened by gzopen().

 See also gzopen(), and gzgets().

gzgets (PHP3 , PHP4)

Get line from file pointer

string gzgets (int zp, int length)

 Returns a (uncompressed) string of up to length - 1 bytes read from the file pointed to by fp. Reading ends when length - 1 bytes have been read, on a newline, or on EOF (whichever comes first).

 If an error occurs, returns false.

 The file pointer must be valid, and must point to a file successfully opened by gzopen().

 See also gzopen(), gzgetc(), and fgets().

gzgetss (PHP3 , PHP4)

 Get line from gz-file pointer and strip HTML tags

string gzgetss (int zp, int length [, string allowable_tags])

 Identical to gzgets(), except that gzgetss() attempts to strip any HTML and PHP tags from the text it reads.

 You can use the optional third parameter to specify tags which should not be stripped.

Note: Allowable_tags was added in PHP 3.0.13, PHP4B3.

 See also gzgets(), gzopen(), and strip_tags().

gzopen (PHP3 , PHP4)

Open gz-file

int gzopen (string filename, string mode [, int use_include_path])

 Opens a gzip (.gz) file for reading or writing. The mode parameter is as in fopen() ("rb" or "wb") but can also include a compression level ("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman only compression as in "wb1h". (See the description of deflateInit2 in zlib.h for more information about the strategy parameter.)

 Gzopen() can be used to read a file which is not in gzip format; in this case gzread() will directly read from the file without decompression.

 Gzopen() returns a file pointer to the file opened, after that, everything you read from this file descriptor will be transparently decompressed and what you write gets compressed.

 If the open fails, the function returns false.

 You can use the optional third parameter and set it to "1", if you want to search for the file in the include_path, too.

Example 1. Gzopen() Example

$fp = gzopen ("/tmp/file.gz", "r");

 See also gzclose().

gzpassthru (PHP3 , PHP4)

 Output all remaining data on a gz-file pointer

int gzpassthru (int zp)

 Reads to EOF on the given gz-file pointer and writes the (uncompressed) results to standard output.

 If an error occurs, returns false.

 The file pointer must be valid, and must point to a file successfully opened by gzopen().

 The gz-file is closed when gzpassthru() is done reading it (leaving zp useless).

gzputs (PHP3 , PHP4)

Write to a gz-file pointer

int gzputs (int zp, string str [, int length])

 Gzputs() is an alias to gzwrite(), and is identical in every way.

gzread (PHP3 , PHP4)

Binary-safe gz-file read

string gzread (int zp, int length)

 gzread() reads up to length bytes from the gz-file pointer referenced by zp. Reading stops when length (uncompressed) bytes have been read or EOF is reached, whichever comes first.

// get contents of a gz-file into a string

$filename = "/usr/local/something.txt.gz";

$zd = gzopen ($filename, "r");

$contents = gzread ($zd, 10000);

gzclose ($zd);

 See also gzwrite(), gzopen(), gzgets(), gzgetss(), gzfile(), and gzpassthru().

gzrewind (PHP3 , PHP4)

Rewind the position of a gz-file pointer

int gzrewind (int zp)

 Sets the file position indicator for zp to the beginning of the file stream.

 If an error occurs, returns 0.

 The file pointer must be valid, and must point to a file successfully opened by gzopen().

 See also gzseek() and gztell().

gzseek (PHP3 , PHP4)

Seek on a gz-file pointer

int gzseek (int zp, int offset)

 Sets the file position indicator for the file referenced by zp to offset bytes into the file stream. Equivalent to calling (in C) gzseek(zp, offset, SEEK_SET).

 If the file is opened for reading, this function is emulated but can be extremely slow. If the file is opened for writing, only forward seeks are supported; gzseek then compresses a sequence of zeroes up to the new starting position.

 Upon success, returns 0; otherwise, returns -1. Note that seeking past EOF is not considered an error.

 See also gztell() and gzrewind().

gztell (PHP3 , PHP4)

Tell gz-file pointer read/write position

int gztell (int zp)

 Returns the position of the file pointer referenced by zp; i.e., its offset into the file stream.

 If an error occurs, returns false.

 The file pointer must be valid, and must point to a file successfully opened by gzopen().

 See also gzopen(), gzseek() and gzrewind().

gzwrite (PHP3 , PHP4)

Binary-safe gz-file write

int gzwrite (int zp, string string [, int length])

 Gzwrite() writes the contents of string to the gz-file stream pointed to by zp. If the length argument is given, writing will stop after length (uncompressed) bytes have been written or the end of string is reached, whichever comes first.

 Note that if the length argument is given, then the magic_quotes_runtime configuration option will be ignored and no slashes will be stripped from string.

 See also gzread(), gzopen(), and gzputs().

readgzfile (PHP3 , PHP4)

Output a gz-file

int readgzfile (string filename [, int use_include_path])

 Reads a file, decompresses it and writes it to standard output.

 Readgzfile() can be used to read a file which is not in gzip format; in this case readgzfile() will directly read from the file without decompression.

 Returns the number of (uncompressed) bytes read from the file. If an error occurs, false is returned and unless the function was called as @readgzfile, an error message is printed.

 The file filename will be opened from the filesystem and its contents written to standard output.

 You can use the optional second parameter and set it to "1", if you want to search for the file in the include_path, too.

 See also gzpassthru(), gzfile(), and gzopen().

gzcompress (PHP4 >= 4.0.1)

Gz-compress a string

string gzcompress (string data [, int level])

 This function returns a gzip-compressed version of the input data or false on errors. The optional parameter level can be given as 0 for no compression up to 9 for maximum compression.

 See also gzuncompress().

gzuncompress (PHP4 >= 4.0.1)

Uncompress a gz-compressed string

string gzcompress (string data [, int length])

 This function takes data compressed by gzcompress() and returns the orignial uncompressed data or false on error. The function will return an error if the uncompressed data is more than 256 times the lenght of the compressed input data or more than the optional parameter length.

 See also gzcompress().

Part V. Appendixes

Appendix A. Migrating from PHP/FI 2.0 to PHP 3.0

About the incompatbilities in 3.0

 PHP 3.0 is rewritten from the ground up. It has a proper parser that is much more robust and consistent than 2.0's. 3.0 is also significantly faster, and uses less memory. However, some of these improvements have not been possible without compatibility changes, both in syntax and functionality.

 In addition, PHP's developers have tried to clean up both PHP's syntax and semantics in version 3.0, and this has also caused some incompatibilities. In the long run, we believe that these changes are for the better.

 This chapter will try to guide you through the incompatibilities you might run into when going from PHP/FI 2.0 to PHP 3.0 and help you resolve them. New features are not mentioned here unless necessary.

 A conversion program that can automatically convert your old PHP/FI 2.0 scripts exists. It can be found in the convertor subdirectory of the PHP 3.0 distribution. This program only catches the syntax changes though, so you should read this chapter carefully anyway.

Start/end tags

 The first thing you probably will notice is that PHP's start and end tags have changed. The old <? > form has been replaced by three new possible forms:

Example A-1. Migration: old start/end tags

<? echo "This is PHP/FI 2.0 code.\n"; >

 As of version 2.0, PHP/FI also supports this variation:

Example A-2. Migration: first new start/end tags

<? echo "This is PHP 3.0 code!\n"; ?>

 Notice that the end tag now consists of a question mark and a greater-than character instead of just greater-than. However, if you plan on using XML on your server, you will get problems with the first new variant, because PHP may try to execute the XML markup in XML documents as PHP code. Because of this, the following variation was introduced:

Example A-3. Migration: second new start/end tags

<?php echo "This is PHP 3.0 code!\n"; ?>

 Some people have had problems with editors that don't understand the processing instruction tags at all. Microsoft FrontPage is one such editor, and as a workaround for these, the following variation was introduced as well:

Example A-4. Migration: third new start/end tags

<script language="php">

 echo "This is PHP 3.0 code!\n";

</script>

if..endif syntax

 The `alternative' way to write if/elseif/else statements, using if(); elseif(); else; endif; cannot be efficiently implemented without adding a large amount of complexity to the 3.0 parser. Because of this, the syntax has been changed:

Example A-5. Migration: old if..endif syntax

if ($foo);

 echo "yep\n";

elseif ($bar);

 echo "almost\n";

else;

 echo "nope\n";

endif;

Example A-6. Migration: new if..endif syntax

if ($foo):

 echo "yep\n";

elseif ($bar):

 echo "almost\n";

else:

 echo "nope\n";

endif;

 Notice that the semicolons have been replaced by colons in all statements but the one terminating the expression (endif).

while syntax

 Just like with if..endif, the syntax of while..endwhile has changed as well:

Example A-7. Migration: old while..endwhile syntax

while ($more_to_come);

 ...

endwhile;

Example A-8. Migration: new while..endwhile syntax

while ($more_to_come):

 ...

endwhile;

Warning

 If you use the old while..endwhile syntax in PHP 3.0, you will get a never-ending loop.

Expression types

 PHP/FI 2.0 used the left side of expressions to determine what type the result should be. PHP 3.0 takes both sides into account when determining result types, and this may cause 2.0 scripts to behave unexpectedly in 3.0.

 Consider this example:

$a[0]=5;

$a[1]=7;

$key = key($a);

while ("" != $key) {

 echo "$keyn";

 next($a);

}

 In PHP/FI 2.0, this would display both of $a's indices. In PHP 3.0, it wouldn't display anything. The reason is that in PHP 2.0, because the left argument's type was string, a string comparison was made, and indeed "" does not equal "0", and the loop went through. In PHP 3.0, when a string is compared with an integer, an integer comparison is made (the string is converted to an integer). This results in comparing atoi("") which is 0, and variablelist which is also 0, and since 0==0, the loop doesn't go through even once.

 The fix for this is simple. Replace the while statement with:

while ((string)$key != "") {

Error messages have changed

 PHP 3.0's error messages are usually more accurate than 2.0's were, but you no longer get to see the code fragment causing the error. You will be supplied with a file name and a line number for the error, though.

Short-circuited boolean evaluation

 In PHP 3.0 boolean evaluation is short-circuited. This means that in an expression like (1 || test_me()), the function test_me() would not be executed since nothing can change the result of the expression after the 1.

 This is a minor compatibility issue, but may cause unexpected side-effects.

Function true/false return values

 Most internal functions have been rewritten so they return TRUE when successful and FALSE when failing, as opposed to 0 and -1 in PHP/FI 2.0, respectively. The new behaviour allows for more logical code, like $fp = fopen("/your/file") or fail("darn!");. Because PHP/FI 2.0 had no clear rules for what functions should return when they failed, most such scripts will probably have to be checked manually after using the 2.0 to 3.0 convertor.

Example A-9. Migration from 2.0: return values, old code

$fp = fopen($file, "r");

if ($fp == -1);

 echo("Could not open $file for reading
\n");

endif;

Example A-10. Migration from 2.0: return values, new code

$fp = @fopen($file, "r") or print("Could not open $file for reading
\n");

Other incompatibilities

•
 The PHP 3.0 Apache module no longer supports Apache versions prior to 1.2. Apache 1.2 or later is required.

•
 echo() no longer supports a format string. Use the printf() function instead.

•
 In PHP/FI 2.0, an implementation side-effect caused $foo[0] to have the same effect as $foo. This is not true for PHP 3.0.

•
 Reading arrays with $array[] is no longer supported

 That is, you cannot traverse an array by having a loop that does $data = $array[]. Use current() and next() instead.

 Also, $array1[] = $array2 does not append the values of $array2 to $array1, but appends $array2 as the last entry of $array1. See also multidimensional array support.

•
 "+" is no longer overloaded as a concatenation operator for strings, instead it converts it's arguments to numbers and performs numeric addition. Use "." instead.

Example A-11. Migration from 2.0: concatenation for strings

echo "1" + "1";

 In PHP 2.0 this would echo 11, in PHP 3.0 it would echo 2. Instead use:

echo "1"."1";

$a = 1;

$b = 1;

echo $a + $b;

 This would echo 2 in both PHP 2.0 and 3.0.

$a = 1;

$b = 1;

echo $a.$b;

 This will echo 11 in PHP 3.0.

Appendix B. PHP development

Adding functions to PHP3

Function Prototype

 All functions look like this:

void php3_foo(INTERNAL_FUNCTION_PARAMETERS) {

}

 Even if your function doesn't take any arguments, this is how it is called.

Function Arguments

 Arguments are always of type pval. This type contains a union which has the actual type of the argument. So, if your function takes two arguments, you would do something like the following at the top of your function:

Example B-1. Fetching function arguments

pval *arg1, *arg2;

if (ARG_COUNT(ht) != 2 || getParameters(ht,2,&arg1,&arg2)==FAILURE) {

 WRONG_PARAM_COUNT;

}

 NOTE: Arguments can be passed either by value or by reference. In both cases you will need to pass &(pval *) to getParameters. If you want to check if the n'th parameter was sent to you by reference or not, you can use the function, ParameterPassedByReference(ht,n). It will return either 1 or 0.

 When you change any of the passed parameters, whether they are sent by reference or by value, you can either start over with the parameter by calling pval_destructor on it, or if it's an ARRAY you want to add to, you can use functions similar to the ones in internal_functions.h which manipulate return_value as an ARRAY.

 Also if you change a parameter to IS_STRING make sure you first assign the new estrdup()'ed string and the string length, and only later change the type to IS_STRING. If you change the string of a parameter which already IS_STRING or IS_ARRAY you should run pval_destructor on it first.

Variable Function Arguments

 A function can take a variable number of arguments. If your function can take either 2 or 3 arguments, use the following:

Example B-2. Variable function arguments

pval *arg1, *arg2, *arg3;

int arg_count = ARG_COUNT(ht);

if (arg_count < 2 || arg_count > 3 ||

 getParameters(ht,arg_count,&arg1,&arg2,&arg3)==FAILURE) {

 WRONG_PARAM_COUNT;

}

Using the Function Arguments

 The type of each argument is stored in the pval type field. This type can be any of the following:

Table B-1. PHP Internal Types

	IS_STRING
	String

	IS_DOUBLE
	Double-precision floating point

	IS_LONG
	Long integer

	IS_ARRAY
	Array

	IS_EMPTY
	None

	IS_USER_FUNCTION
	??

	IS_INTERNAL_FUNCTION
	?? (if some of these cannot be passed to a function - delete)

	IS_CLASS
	??

	IS_OBJECT
	??

 If you get an argument of one type and would like to use it as another, or if you just want to force the argument to be of a certain type, you can use one of the following conversion functions:

convert_to_long(arg1);

convert_to_double(arg1);

convert_to_string(arg1);

convert_to_boolean_long(arg1); /* If the string is "" or "0" it becomes 0, 1 otherwise */

convert_string_to_number(arg1); /* Converts string to either LONG or DOUBLE depending on string */

 These function all do in-place conversion. They do not return anything.

 The actual argument is stored in a union; the members are:

•
IS_STRING: arg1->value.str.val

•
IS_LONG: arg1->value.lval

•
IS_DOUBLE: arg1->value.dval

Memory Management in Functions

 Any memory needed by a function should be allocated with either emalloc() or estrdup(). These are memory handling abstraction functions that look and smell like the normal malloc() and strdup() functions. Memory should be freed with efree().

 There are two kinds of memory in this program: memory which is returned to the parser in a variable, and memory which you need for temporary storage in your internal function. When you assign a string to a variable which is returned to the parser you need to make sure you first allocate the memory with either emalloc() or estrdup(). This memory should NEVER be freed by you, unless you later in the same function overwrite your original assignment (this kind of programming practice is not good though).

 For any temporary/permanent memory you need in your functions/library you should use the three emalloc(), estrdup(), and efree() functions. They behave EXACTLY like their counterpart functions. Anything you emalloc() or estrdup() you have to efree() at some point or another, unless it's supposed to stick around until the end of the program; otherwise, there will be a memory leak. The meaning of "the functions behave exactly like their counterparts" is: if you efree() something which was not emalloc()'ed nor estrdup()'ed you might get a segmentation fault. So please take care and free all of your wasted memory.

 If you compile with "-DDEBUG", PHP3 will print out a list of all memory that was allocated using emalloc() and estrdup() but never freed with efree() when it is done running the specified script.

Setting Variables in the Symbol Table

 A number of macros are available which make it easier to set a variable in the symbol table:

•
SET_VAR_STRING(name,value) 1

•
SET_VAR_DOUBLE(name,value)

•
SET_VAR_LONG(name,value)

 1

 Symbol tables in PHP 3.0 are implemented as hash tables. At any given time, &symbol_table is a pointer to the 'main' symbol table, and active_symbol_table points to the currently active symbol table (these may be identical like in startup, or different, if you're inside a function).

 The following examples use 'active_symbol_table'. You should replace it with &symbol_table if you specifically want to work with the 'main' symbol table. Also, the same functions may be applied to arrays, as explained below.

Example B-3. Checking whether $foo exists in a symbol table

if (hash_exists(active_symbol_table,"foo",sizeof("foo"))) { exists... }

else { doesn't exist }

Example B-4. Finding a variable's size in a symbol table

hash_find(active_symbol_table,"foo",sizeof("foo"),&pvalue);

check(pvalue.type);

 Arrays in PHP 3.0 are implemented using the same hashtables as symbol tables. This means the two above functions can also be used to check variables inside arrays.

 If you want to define a new array in a symbol table, you should do the following.

 First, you may want to check whether it exists and abort appropiately, using hash_exists() or hash_find().

 Next, initialize the array:

Example B-5. Initializing a new array

pval arr;

if (array_init(&arr) == FAILURE) { failed... };

hash_update(active_symbol_table,"foo",sizeof("foo"),&arr,sizeof(pval),NULL);

 This code declares a new array, named $foo, in the active symbol table. This array is empty.

 Here's how to add new entries to it:

Example B-6. Adding entries to a new array

pval entry;

entry.type = IS_LONG;

entry.value.lval = 5;

/* defines $foo["bar"] = 5 */

hash_update(arr.value.ht,"bar",sizeof("bar"),&entry,sizeof(pval),NULL);

/* defines $foo[7] = 5 */

hash_index_update(arr.value.ht,7,&entry,sizeof(pval),NULL);

/* defines the next free place in $foo[],

 * $foo[8], to be 5 (works like php2)

 */

hash_next_index_insert(arr.value.ht,&entry,sizeof(pval),NULL);

 If you'd like to modify a value that you inserted to a hash, you must first retrieve it from the hash. To prevent that overhead, you can supply a pval ** to the hash add function, and it'll be updated with the pval * address of the inserted element inside the hash. If that value is NULL (like in all of the above examples) - that parameter is ignored.

 hash_next_index_insert() uses more or less the same logic as "$foo[] = bar;" in PHP 2.0.

 If you are building an array to return from a function, you can initialize the array just like above by doing:

if (array_init(return_value) == FAILURE) { failed...; }

 ...and then adding values with the helper functions:

add_next_index_long(return_value,long_value);

add_next_index_double(return_value,double_value);

add_next_index_string(return_value,estrdup(string_value));

 Of course, if the adding isn't done right after the array initialization, you'd probably have to look for the array first:

pval *arr;

if (hash_find(active_symbol_table,"foo",sizeof("foo"),(void **)&arr)==FAILURE) { can't find... }

else { use arr->value.ht... }

 Note that hash_find receives a pointer to a pval pointer, and not a pval pointer.

 Just about any hash function returns SUCCESS or FAILURE (except for hash_exists(), which returns a boolean truth value).

Returning simple values

 A number of macros are available to make returning values from a function easier.

 The RETURN_* macros all set the return value and return from the function:

•
RETURN

•
RETURN_FALSE

•
RETURN_TRUE

•
RETURN_LONG(l)

•
RETURN_STRING(s,dup) If dup is true, duplicates the string

•
RETURN_STRINGL(s,l,dup) Return string (s) specifying length (l).

•
RETURN_DOUBLE(d)

 The RETVAL_* macros set the return value, but do not return.

•
RETVAL_FALSE

•
RETVAL_TRUE

•
RETVAL_LONG(l)

•
RETVAL_STRING(s,dup) If dup is true, duplicates the string

•
RETVAL_STRINGL(s,l,dup) Return string (s) specifying length (l).

•
RETVAL_DOUBLE(d)

 The string macros above will all estrdup() the passed 's' argument, so you can safely free the argument after calling the macro, or alternatively use statically allocated memory.

 If your function returns boolean success/error responses, always use RETURN_TRUE and RETURN_FALSE respectively.

Returning complex values

 Your function can also return a complex data type such as an object or an array.

 Returning an object:

1.
Call object_init(return_value).

2.
Fill it up with values. The functions available for this purpose are listed below.

3.
 Possibly, register functions for this object. In order to obtain values from the object, the function would have to fetch "this" from the active_symbol_table. Its type should be IS_OBJECT, and it's basically a regular hash table (i.e., you can use regular hash functions on .value.ht). The actual registration of the function can be done using:

add_method(return_value, function_name, function_ptr);

 The functions used to populate an object are:

•
add_property_long(return_value, property_name, l) - Add a property named 'property_name', of type long, equal to 'l'

•
add_property_double(return_value, property_name, d) - Same, only adds a double

•
add_property_string(return_value, property_name, str) - Same, only adds a string

•
add_property_stringl(return_value, property_name, str, l) - Same, only adds a string of length 'l'

 Returning an array:

1.
Call array_init(return_value).

2.
Fill it up with values. The functions available for this purpose are listed below.

 The functions used to populate an array are:

•
add_assoc_long(return_value,key,l) - add associative entry with key 'key' and long value 'l'

•
add_assoc_double(return_value,key,d)

•
add_assoc_string(return_value,key,str,duplicate)

•
add_assoc_stringl(return_value,key,str,length,duplicate) specify the string length

•
add_index_long(return_value,index,l) - add entry in index 'index' with long value 'l'

•
add_index_double(return_value,index,d)

•
add_index_string(return_value,index,str)

•
add_index_stringl(return_value,index,str,length) - specify the string length

•
add_next_index_long(return_value,l) - add an array entry in the next free offset with long value 'l'

•
add_next_index_double(return_value,d)

•
add_next_index_string(return_value,str)

•
add_next_index_stringl(return_value,str,length) - specify the string length

Using the resource list

 PHP 3.0 has a standard way of dealing with various types of resources. This replaces all of the local linked lists in PHP 2.0.

 Available functions:

•
php3_list_insert(ptr, type) - returns the 'id' of the newly inserted resource

•
php3_list_delete(id) - delete the resource with the specified id

•
php3_list_find(id,*type) - returns the pointer of the resource with the specified id, updates 'type' to the resource's type

 Typically, these functions are used for SQL drivers but they can be used for anything else; for instance, maintaining file descriptors.

 Typical list code would look like this:

Example B-7. Adding a new resource

RESOURCE *resource;

/* ...allocate memory for resource and acquire resource... */

/* add a new resource to the list */

return_value->value.lval = php3_list_insert((void *) resource, LE_RESOURCE_TYPE);

return_value->type = IS_LONG;

Example B-8. Using an existing resource

pval *resource_id;

RESOURCE *resource;

int type;

convert_to_long(resource_id);

resource = php3_list_find(resource_id->value.lval, &type);

if (type != LE_RESOURCE_TYPE) {

 php3_error(E_WARNING,"resource index %d has the wrong type",resource_id->value.lval);

 RETURN_FALSE;

}

/* ...use resource... */

Example B-9. Deleting an existing resource

pval *resource_id;

RESOURCE *resource;

int type;

convert_to_long(resource_id);

php3_list_delete(resource_id->value.lval);

 The resource types should be registered in php3_list.h, in enum list_entry_type. In addition, one should add shutdown code for any new resource type defined, in list.c's list_entry_destructor() (even if you don't have anything to do on shutdown, you must add an empty case).

Using the persistent resource table

 PHP 3.0 has a standard way of storing persistent resources (i.e., resources that are kept in between hits). The first module to use this feature was the MySQL module, and mSQL followed it, so one can get the general impression of how a persistent resource should be used by reading mysql.c. The functions you should look at are:

	php3_mysql_do_connect

	php3_mysql_connect()

	php3_mysql_pconnect()

 The general idea of persistence modules is this:

1.
Code all of your module to work with the regular resource list mentioned in section (9).

2.
Code extra connect functions that check if the resource already exists in the persistent resource list. If it does, register it as in the regular resource list as a pointer to the persistent resource list (because of 1., the rest of the code should work immediately). If it doesn't, then create it, add it to the persistent resource list AND add a pointer to it from the regular resource list, so all of the code would work since it's in the regular resource list, but on the next connect, the resource would be found in the persistent resource list and be used without having to recreate it. You should register these resources with a different type (e.g. LE_MYSQL_LINK for non-persistent link and LE_MYSQL_PLINK for a persistent link).

 If you read mysql.c, you'll notice that except for the more complex connect function, nothing in the rest of the module has to be changed.

 The very same interface exists for the regular resource list and the persistent resource list, only 'list' is replaced with 'plist':

•
php3_plist_insert(ptr, type) - returns the 'id' of the newly inserted resource

•
php3_plist_delete(id) - delete the resource with the specified id

•
php3_plist_find(id,*type) - returns the pointer of the resource with the specified id, updates 'type' to the resource's type

 However, it's more than likely that these functions would prove to be useless for you when trying to implement a persistent module. Typically, one would want to use the fact that the persistent resource list is really a hash table. For instance, in the MySQL/mSQL modules, when there's a pconnect() call (persistent connect), the function builds a string out of the host/user/passwd that were passed to the function, and hashes the SQL link with this string as a key. The next time someone calls a pconnect() with the same host/user/passwd, the same key would be generated, and the function would find the SQL link in the persistent list.

 Until further documented, you should look at mysql.c or msql.c to see how one should use the plist's hash table abilities.

 One important thing to note: resources going into the persistent resource list must *NOT* be allocated with PHP's memory manager, i.e., they should NOT be created with emalloc(), estrdup(), etc. Rather, one should use the regular malloc(), strdup(), etc. The reason for this is simple - at the end of the request (end of the hit), every memory chunk that was allocated using PHP's memory manager is deleted. Since the persistent list isn't supposed to be erased at the end of a request, one mustn't use PHP's memory manager for allocating resources that go to it.

 When you register a resource that's going to be in the persistent list, you should add destructors to it both in the non-persistent list and in the persistent list. The destructor in the non-persistent list destructor shouldn't do anything. The one in the persistent list destructor should properly free any resources obtained by that type (e.g. memory, SQL links, etc). Just like with the non-persistent resources, you *MUST* add destructors for every resource, even it requires no destructotion and the destructor would be empty. Remember, since emalloc() and friends aren't to be used in conjunction with the persistent list, you mustn't use efree() here either.

Adding runtime configuration directives

 Many of the features of PHP3 can be configured at runtime. These configuration directives can appear in either the designated php3.ini file, or in the case of the Apache module version in the Apache .conf files. The advantage of having them in the Apache .conf files is that they can be configured on a per-directory basis. This means that one directory may have a certain safemodeexecdir for example, while another directory may have another. This configuration granularity is especially handy when a server supports multiple virtual hosts.

 The steps required to add a new directive:

1.
Add directive to php3_ini_structure struct in mod_php3.h.

2.
In main.c, edit the php3_module_startup function and add the appropriate cfg_get_string() or cfg_get_long() call.

3.
Add the directive, restrictions and a comment to the php3_commands structure in mod_php3.c. Note the restrictions part. RSRC_CONF are directives that can only be present in the actual Apache .conf files. Any OR_OPTIONS directives can be present anywhere, include normal .htaccess files.

4.
In either php3take1handler() or php3flaghandler() add the appropriate entry for your directive.

5.
In the configuration section of the _php3_info() function in functions/info.c you need to add your new directive.

6.
And last, you of course have to use your new directive somewhere. It will be addressable as php3_ini.directive.

Calling User Functions

 To call user functions from an internal function, you should use the call_user_function() function.

 call_user_function() returns SUCCESS on success, and FAILURE in case the function cannot be found. You should check that return value! If it returns SUCCESS, you are responsible for destroying the retval pval yourself (or return it as the return value of your function). If it returns FAILURE, the value of retval is undefined, and you mustn't touch it.

 All internal functions that call user functions must be reentrant. Among other things, this means they must not use globals or static variables.

 call_user_function() takes six arguments:

HashTable *function_table

 This is the hash table in which the function is to be looked up.

pval *object

 This is a pointer to an object on which the function is invoked. This should be NULL if a global function is called. If it's not NULL (i.e. it points to an object), the function_table argument is ignored, and instead taken from the object's hash. The object *may* be modified by the function that is invoked on it (that function will have access to it via $this). If for some reason you don't want that to happen, send a copy of the object instead.

pval *function_name

 The name of the function to call. Must be a pval of type IS_STRING with function_name.str.val and function_name.str.len set to the appropriate values. The function_name is modified by call_user_function() - it's converted to lowercase. If you need to preserve the case, send a copy of the function name instead.

pval *retval

 A pointer to a pval structure, into which the return value of the invoked function is saved. The structure must be previously allocated - call_user_function() does NOT allocate it by itself.

int param_count

 The number of parameters being passed to the function.

pval *params[]

 An array of pointers to values that will be passed as arguments to the function, the first argument being in offset 0, the second in offset 1, etc. The array is an array of pointers to pval's; The pointers are sent as-is to the function, which means if the function modifies its arguments, the original values are changed (passing by reference). If you don't want that behavior, pass a copy instead.

Reporting Errors

 To report errors from an internal function, you should call the php3_error() function. This takes at least two parameters -- the first is the level of the error, the second is the format string for the error message (as in a standard printf() call), and any following arguments are the parameters for the format string. The error levels are:

E_NOTICE

 Notices are not printed by default, and indicate that the script encountered something that could indicate an error, but could also happen in the normal course of running a script. For example, trying to access the value of a variable which has not been set, or calling stat() on a file that doesn't exist.

E_WARNING

 Warnings are printed by default, but do not interrupt script execution. These indicate a problem that should have been trapped by the script before the call was made. For example, calling ereg() with an invalid regular expression.

E_ERROR

 Errors are also printed by default, and execution of the script is halted after the function returns. These indicate errors that can not be recovered from, such as a memory allocation problem.

E_PARSE

 Parse errors should only be generated by the parser. The code is listed here only for the sake of completeness.

E_CORE_ERROR

 This is like an E_ERROR, except it is generated by the core of PHP. Functions should not generate this type of error.

E_CORE_WARNING

 This is like an E_WARNING, except it is generated by the core of PHP. Functions should not generate this type of error.

E_COMPILE_ERROR

 This is like an E_ERROR, except it is generated by the Zend Scripting Engine. Functions should not generate this type of error.

E_COMPILE_WARNING

 This is like an E_WARNING, except it is generated by the Zend Scripting Engine. Functions should not generate this type of error.

E_USER_ERROR

 This is like an E_ERROR, except it is generated in PHP code by using the PHP function trigger_error(). Functions should not generate this type of error.

E_USER_WARNING

 This is like an E_WARNING, except it is generated by using the PHP function trigger_error(). Functions should not generate this type of error.

E_USER_NOTICE

 This is like an E_NOTICE, except it is generated by using the PHP function trigger_error(). Functions should not generate this type of error.

Notes

 Be careful here. The value part must be malloc'ed manually because the memory management code will try to free this pointer later. Do not pass statically allocated memory into a SET_VAR_STRING.

Appendix C. The PHP Debugger

Using the Debugger

 PHP's internal debugger is useful for tracking down evasive bugs. The debugger works by connecting to a TCP port for every time PHP starts up. All error messages from that request will be sent to this TCP connection. This information is intended for "debugging server" that can run inside an IDE or programmable editor (such as Emacs).

 How to set up the debugger:

1.
 Set up a TCP port for the debugger in the configuration file (debugger.port) and enable it (debugger.enabled).

2.
 Set up a TCP listener on that port somewhere (for example socket -l -s 1400 on UNIX).

3.
 In your code, run "debugger_on(host)", where host is the IP number or name of the host running the TCP listener.

 Now, all warnings, notices etc. will show up on that listener socket, even if you them turned off with error_reporting().

Debugger Protocol

 The debugger protocol is line-based. Each line has a type, and several lines compose a message. Each message starts with a line of the type start and terminates with a line of the type end. PHP may send lines for different messages simultaneously.

 A line has this format:

date time
host(pid)

type:

message-data
date

 Date in ISO 8601 format (yyyy-mm-dd)

time

Time including microseconds: hh:mm:uuuuuu

host

 DNS name or IP address of the host where the script error was generated.

pid

 PID (process id) on host of the process with the PHP script that generated this error.

type

 Type of line. Tells the receiving program about what it should treat the following data as:

Table C-1. Debugger Line Types

	Name
	Meaning

	start
	 Tells the receiving program that a debugger message starts here. The contents of data will be the type of error message, listed below.

	message
	The PHP error message.

	location
	 File name and line number where the error occured. The first location line will always contain the top-level location. data will contain file:line. There will always be a location line after message and after every function.

	 frames
	Number of frames in the following stack dump. If there are four frames, expect information about four levels of called functions. If no "frames" line is given, the depth should be assumed to be 0 (the error occured at top-level).

	 function
	 Name of function where the error occured. Will be repeated once for every level in the function call stack.

	end
	 Tells the receiving program that a debugger message ends here.

data

Line data.

Table C-2. Debugger Error Types

	Debugger
	PHP Internal

	warning
	E_WARNING

	error
	E_ERROR

	parse
	E_PARSE

	notice
	E_NOTICE

	core-error
	E_CORE_ERROR

	core-warning
	E_CORE_WARNING

	unknown
	(any other)

Example C-1. Example Debugger Message

1998-04-05 23:27:400966 lucifer.guardian.no(20481) start: notice

1998-04-05 23:27:400966 lucifer.guardian.no(20481) message: Uninitialized variable

1998-04-05 23:27:400966 lucifer.guardian.no(20481) location: (null):7

1998-04-05 23:27:400966 lucifer.guardian.no(20481) frames: 1

1998-04-05 23:27:400966 lucifer.guardian.no(20481) function: display

1998-04-05 23:27:400966 lucifer.guardian.no(20481) location: /home/ssb/public_html/test.php3:10

1998-04-05 23:27:400966 lucifer.guardian.no(20481) end: notice

